Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

miR-151a-3p-rich small extracellular vesicles derived from gastric cancer accelerate liver metastasis via initiating a hepatic stemness-enhancing niche

Abstract

Liver metastasis (LM) severely affects gastric cancer (GC) patients’ prognosis. Small extracellular vesicles (sEVs) play key roles in intercellular communication. Specific sEV-miRNAs from several types of cancer were found to induce a premetastatic niche in target organs before tumor cell arrive. However, whether the primary GC affects hepatic microenvironment or the role of sEV-miRNAs in GC-LM is yet unclear. We report that GC-derived sEVs are primarily absorbed by Kupffer cells (KCs). sEV-miR-151a-3p is highly expressed in GC-LM patients’ plasma and presents poor prognosis. Treating mice with sEVs-enriched in miR-151a-3p promotes GC-LM, whereas has no influence on the proliferation of GC cells in situ. Mechanistically, sEV-miR-151a-3p inhibits SP3 in KCs. Simultaneously, sEV-miR-151a-3p targets YTHDF3 to decrease the transcriptional inhibitory activity of SP3 by reducing SUMO1 translation in a N6-methyladenosine-dependent manner. These factors contribute to TGF-β1 transactivation in KCs, subsequently activating the SMAD2/3 pathway and enhancing the stem cell-like properties of incoming GC cells. Furthermore, sEV-miR-151a-3p induces miR-151a-3p transcription in KCs to form a positive feedback loop. In summary, our results reveal a previously unidentified regulatory axis initiated by sEV-miR-151a-3p that establishes a hepatic stemness-permissive niche to support GC-LM. sEV-miR-151a-3p could be a promising diagnostic biomarker and preventive treatment candidate for GC-LM.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: GC-derived sEVs are absorbed by KCs.
Fig. 2: sEV-miR-151a-3p is significantly upregulated in the plasma of GC patients with LM.
Fig. 3: sEV-miR-151a-3p promotes liver metastasis and the stem cell-like properties of metastatic GC cells in liver.
Fig. 4: sEV-miR-151a-3p transcriptionally inhibits TGF-β1 expression by directly targeting SP3.
Fig. 5: sEV-miR-151a-3p induces endogenous miR-151a-3p expression by inhibiting SP3 in KCs.
Fig. 6: sEV-miR-151a-3p relieves the SUMOylation and inhibitory effect of SP3 by restraining YTHDF3-mediated SUMO1 translation.
Fig. 7: sEV-miR-151a-3p enhances stem cell-like properties of hepatic metastatic GC cells by activating the SMAD2/3 pathway.
Fig. 8: sEV-miR-151a-3p promotes hepatic carcinomatosis of GC in vivo by inhibiting SP3 in KCs.

Data availability

The sEV-miRNA-seq and mRNA-seq data that support the findings of this study have been deposited in the SRA database from NCBI with the accession code PRJNA648286. The YTHDF3-CLIP-seq and YTHDF3-RIP-seq and meRIP-seq were downloaded from GEO database with the dataset ID: GSE86214; GSE130171; GSE130172. All other data are available in the article and its additional files or from the corresponding author upon request.

References

  1. 1.

    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    PubMed  Google Scholar 

  2. 2.

    Chen J, Tang Z, Dong X, Gao S, Fang H, Wu D, et al. Radiofrequency ablation for liver metastasis from gastric cancer. Eur J Surg Oncol. 2013;39:701–6.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Luo Z, Rong Z, Huang C. Surgery strategies for gastric cancer with liver metastasis. Front Oncol. 2019;9:1353.

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989;8:98–101.

    CAS  PubMed  Google Scholar 

  5. 5.

    Liu Y, Gu Y, Han Y, Zhang Q, Jiang Z, Zhang X, et al. Tumor exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell. 2016;30:243–56.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 2015;17:183–94.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Liu C, Guo J, Tian F, Yang N, Yan F, Ding Y, et al. Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows. ACS Nano. 2017;11:6968–76.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R, et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol. 2015;67:33–41.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015;527:100–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015;17:816–26.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Hashimoto K, Ochi H, Sunamura S, Kosaka N, Mabuchi Y, Fukuda T, et al. Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A. Proc Natl Acad Sci USA. 2018;115:2204–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18:883–91.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Colletti M, Tomao L, Galardi A, Paolini A, Di Paolo V, De, Stefanis C, et al. Neuroblastoma-secreted exosomes carrying miR-375 promote osteogenic differentiation of bone-marrow mesenchymal stromal cells. J Extracell Vesicles. 2020;9:1774144.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Zhang H, Deng T, Liu R, Bai M, Zhou L, Wang X, et al. Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nat Commun. 2017;8:15016.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Yue C, Chen X, Li J, Yang X, Li Y, Wen Y. miR-151-3p inhibits proliferation and invasion of colon cancer cell by targeting close homolog of L1. J Biomed Nanotechnol. 2020;16:876–84.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Li X, Liu Y, Zhang X, Shen J, Xu R, Liu Y, et al. Circular RNA hsa_circ_0000073 contributes to osteosarcoma cell proliferation, migration, invasion and methotrexate resistance by sponging miR-145-5p and miR-151-3p and upregulating NRAS. Aging (Albany NY). 2020;12:14157–73.

    CAS  Article  Google Scholar 

  17. 17.

    Yeh TC, Huang TT, Yeh TS, Chen YR, Hsu KW, Yin PH, et al. miR-151-3p targets TWIST1 to repress migration of human breast cancer cells. PLoS One. 2016;11:e0168171.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. 18.

    Liu H, Cheng Y, Xu Y, Xu H, Lin Z, Fan J, et al. The inhibition of tumor protein p53 by microRNA-151a-3p induced cell proliferation, migration and invasion in nasopharyngeal carcinoma. Biosci Rep. 2019;39:BSR20191357.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Zhang Z, Yin J, Lu C, Wei Y, Zeng A, You Y. Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. J Exp Clin Cancer Res. 2019;38:166.

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Lima CR, Gomes CC, Santos MF. Role of microRNAs in endocrine cancer metastasis. Mol Cell Endocrinol. 2017;456:62–75.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Ma G, Song G, Zou X, Shan X, Liu Q, Xia T, et al. Circulating plasma microRNA signature for the diagnosis of cervical cancer. Cancer Biomark. 2019;26:491–500.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Hsu KW, Fang WL, Huang KH, Huang TT, Lee HC, Hsieh RH, et al. Notch1 pathway-mediated microRNA-151-5p promotes gastric cancer progression. Oncotarget. 2016;7:38036–51.

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Liu T, Xu H, Huang M, Ma W, Saxena D, Lustig RA, et al. Circulating glioma cells exhibit stem cell-like properties. Cancer Res. 2018;78:6632–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Celia-Terrassa T, Liu DD, Choudhury A, Hang X, Wei Y, Zamalloa J, et al. Normal and cancerous mammary stem cells evade interferon-induced constraint through the miR-199a-LCOR axis. Nat Cell Biol. 2017;19:711–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Grillet F, Bayet E, Villeronce O, Zappia L, Lagerqvist EL, Lunke S, et al. Circulating tumour cells from patients with colorectal cancer have cancer stem cell hallmarks in ex vivo culture. Gut. 2017;66:1802–10.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Lee D, Na J, Ryu J, Kim HJ, Nam SH, Kang M, et al. Interaction of tetraspan(in) TM4SF5 with CD44 promotes self-renewal and circulating capacities of hepatocarcinoma cells. Hepatology. 2015;61:1978–97.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL, Chambers AF, et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol. 1998;153:865–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Gao H, Chakraborty G, Lee-Lim AP, Mo Q, Decker M, Vonica A, et al. The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell. 2012;150:764–79.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol. 2013;15:807–17.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–35.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Ross S, Best JL, Zon LI, Gill G. SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol Cell. 2002;10:831–42.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res. 2017;27:315–28.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Chang G, Shi L, Ye Y, Shi H, Zeng L, Tiwary S, et al. YTHDF3 induces the translation of m(6)A-enriched gene transcripts to promote breast cancer brain metastasis. Cancer Cell. 2020;38:857–71.e857.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Li A, Chen YS, Ping XL, Yang X, Xiao W, Yang Y, et al. Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation. Cell Res. 2017;27:444–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Chen L, Xiao Z, Meng Y, Zhao Y, Han J, Su G, et al. The enhancement of cancer stem cell properties of MCF-7 cells in 3D collagen scaffolds for modeling of cancer and anti-cancer drugs. Biomaterials. 2012;33:1437–44.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K. Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell. 2009;5:504–14.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Badiola I, Olaso E, Crende O, Friedman SL, Vidal-Vanaclocha F. Discoidin domain receptor 2 deficiency predisposes hepatic tissue to colon carcinoma metastasis. Gut. 2012;61:1465–72.

    PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Grunwald B, Harant V, Schaten S, Fruhschutz M, Spallek R, Hochst B, et al. Pancreatic premalignant lesions secrete tissue inhibitor of metalloproteinases-1, which activates hepatic stellate cells via CD63 signaling to create a premetastatic niche in the liver. Gastroenterology. 2016;151:1011–24.e1017.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  39. 39.

    Dou C, Liu Z, Tu K, Zhang H, Chen C, Yaqoob U, et al. P300 acetyltransferase mediates stiffness-induced activation of hepatic stellate cells into tumor-promoting myofibroblasts. Gastroenterology. 2018;154:2209–21.e2214.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    O’Dea KP, Tan YY, Shah S, VP B, CT K, Wilson MR, et al. Monocytes mediate homing of circulating microvesicles to the pulmonary vasculature during low-grade systemic inflammation. J Extracell Vesicles. 2020;9:1706708.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Qiu X, Li Z, Han X, Zhen L, Luo C, Liu M, et al. Tumor-derived nanovesicles promote lung distribution of the therapeutic nanovector through repression of Kupffer cell-mediated phagocytosis. Theranostics. 2019;9:2618–36.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Kan Z, Ivancev K, Lunderquist A, McCuskey PA, McCuskey RS, Wallace S. In vivo microscopy of hepatic metastases: dynamic observation of tumor cell invasion and interaction with Kupffer cells. Hepatology. 1995;21:487–94.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Matsumura H, Kondo T, Ogawa K, Tamura T, Fukunaga K, Murata S, et al. Kupffer cells decrease metastasis of colon cancer cells to the liver in the early stage. Int J Oncol. 2014;45:2303–10.

    PubMed  Article  Google Scholar 

  44. 44.

    Wen SW, Ager EI, Christophi C. Bimodal role of Kupffer cells during colorectal cancer liver metastasis. Cancer Biol Ther. 2013;14:606–13.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Leek RD, Landers RJ, Harris AL, Lewis CE. Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. Br J Cancer. 1999;79:991–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Lissbrant IF, Stattin P, Wikstrom P, Damber JE, Egevad L, Bergh A. Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival. Int J Oncol. 2000;17:445–51.

    CAS  PubMed  Google Scholar 

  47. 47.

    Brodt P. Role of the microenvironment in liver metastasis: from pre- to prometastatic niches. Clin Cancer Res. 2016;22:5971–82.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Kennett SB, Udvadia AJ, Horowitz JM. Sp3 encodes multiple proteins that differ in their capacity to stimulate or repress transcription. Nucleic Acids Res. 1997;25:3110–17.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Stielow B, Kruger I, Diezko R, Finkernagel F, Gillemans N, Kong-a-San J, et al. Epigenetic silencing of spermatocyte-specific and neuronal genes by SUMO modification of the transcription factor Sp3. PLoS Genet. 2010;6:e1001203.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Rosonina E, Akhter A, Dou Y, Babu J, Sri, Theivakadadcham VS. Regulation of transcription factors by sumoylation. Transcription. 2017;8:220–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Zhang Z, Du J, Wang S, Shao L, Jin K, Li F, et al. OTUB2 promotes cancer metastasis via hippo-independent activation of YAP and TAZ. Mol Cell. 2019;73:7–21.e27.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Zhang Y, Wang X, Zhang X, Wang J, Ma Y, Zhang L, et al. RNA-binding protein YTHDF3 suppresses interferon-dependent antiviral responses by promoting FOXO3 translation. Proc Natl Acad Sci USA. 2019;116:976–81.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Gonzalez-Ramos M, Calleros L, Lopez-Ongil S, Raoch V, Griera M, Rodriguez-Puyol M, et al. HSP70 increases extracellular matrix production by human vascular smooth muscle through TGF-beta1 up-regulation. Int J Biochem Cell Biol. 2013;45:232–42.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Little AC, Pathanjeli P, Wu Z, Bao L, Goo LE, Yates JA, et al. IL-4/IL-13 stimulated macrophages enhance breast cancer invasion via Rho-GTPase regulation of synergistic VEGF/CCL-18 signaling. Front Oncol. 2019;9:456.

    PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Yeh HW, Hsu EC, Lee SS, Lang YD, Lin YC, Chang CY, et al. PSPC1 mediates TGF-beta1 autocrine signalling and Smad2/3 target switching to promote EMT, stemness and metastasis. Nat Cell Biol. 2018;20:479–91.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Cui X, Morales RT, Qian W, Wang H, Gagner JP, Dolgalev I, et al. Hacking macrophage-associated immunosuppression for regulating glioblastoma angiogenesis. Biomaterials. 2018;161:164–78.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Zhang X, Liu L, Deng X, Li D, Cai H, Ma Y, et al. MicroRNA 483-3p targets Pard3 to potentiate TGF-beta1-induced cell migration, invasion, and epithelial-mesenchymal transition in anaplastic thyroid cancer cells. Oncogene. 2019;38:699–715.

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Wang Y, Tu K, Liu D, Guo L, Chen Y, Li Q, et al. p300 acetyltransferase is a cytoplasm-to-nucleus shuttle for SMAD2/3 and TAZ nuclear transport in transforming growth factor beta-stimulated hepatic stellate cells. Hepatology. 2019;70:1409–23.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Bragado P, Estrada Y, Parikh F, Krause S, Capobianco C, Farina HG, et al. TGF-beta2 dictates disseminated tumour cell fate in target organs through TGF-beta-RIII and p38alpha/beta signalling. Nat Cell Biol. 2013;15:1351–61.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Liu B, Shyr Y, Cai J, Liu Q. Interplay between miRNAs and host genes and their role in cancer. Brief Funct Genomics. 2018;18:255–66.

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Kasar S, Underbayev C, Yuan Y, Hanlon M, Aly S, Khan H, et al. Therapeutic implications of activation of the host gene (Dleu2) promoter for miR-15a/16-1 in chronic lymphocytic leukemia. Oncogene. 2014;33:3307–15.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Massague J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature. 2016;529:298–306.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Vanharanta S, Massague J. Origins of metastatic traits. Cancer Cell. 2013;24:410–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Kobayashi A, Okuda H, Xing F, Pandey PR, Watabe M, Hirota S, et al. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med. 2011;208:2641–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (81871946, 82002558, 82072708); Special Foundation for National Science and Technology Basic Research Program of China (2019FY101104); the Primary Research & Development Plan of Jiangsu Province (BE2016786); the Program for Development of Innovative Research Team in the First Affiliated Hospital of NJMU; the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, JX10231801); Jiangsu Key Medical Discipline (General Surgery) (ZDXKA2016005); Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University. We would like to express our gratitude to Dr Xiaofei Zhi and Dr Zheng Chen for their valuable advice on our study. We also thank Prof. Xinyu Xu for her help on FACS experiments.

Author information

Affiliations

Authors

Contributions

Z Xu planned and supervised this study, as well as provided most of the funding support. BL, YX, JL, and WW performed all the experiments. Z Xuan, CC, and TJ analyzed and interpreted the data. LF and LW drew the diagrams. ZL, ZH, and QL drafted the manuscript. LX, SQ, and LZ collected and sorted the clinical data of patients. DZ and HX provided clinical tissue samples and information.

Corresponding author

Correspondence to Zekuan Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the Ethics Committee for Clinical Research of The First Affiliated Hospital of Nanjing Medical University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, B., Xia, Y., Lv, J. et al. miR-151a-3p-rich small extracellular vesicles derived from gastric cancer accelerate liver metastasis via initiating a hepatic stemness-enhancing niche. Oncogene (2021). https://doi.org/10.1038/s41388-021-02011-0

Download citation

Search

Quick links