Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SRT1720 inhibits the growth of bladder cancer in organoids and murine models through the SIRT1-HIF axis

Abstract

There are unmet clinical needs for novel therapeutic targets and drugs for bladder cancer. Majority of previous work relied on limited bladder cancer cell lines, which could not well represent the tumor heterogeneity and pathology of this disease. Recently, it has been shown that cancer organoids can recapitulate pathological and molecular properties of bladder cancer. Here, we report, by our knowledge, the first bladder cancer organoid-based small molecule screening for epigenetic drugs. We found that SRT1720, a Sirtuin 1 (SIRT1) activator, significantly inhibits the growth of both mouse and human bladder cancer organoids. And it also restrains the development of mouse in situ bladder cancer and human PDX bladder cancer. Mutation of Sirt1 promotes the growth of cancer organoids and decreases their sensitivity to SRT1720, which validate Sirt1 as the target of SRT1720 in bladder cancer. Mechanistically, SRT1720 treatment represses the hypoxia pathway through deacetylating HIF1α by activating Sirt1. Genetic or pharmaceutic inhibitions of HIF mimic the anti-tumor effect of SRT1720. Furthermore, the SIRT1-repressed gene signature is associated with the hypoxia target gene signature and poor prognosis in human bladder cancers. Thus, our study demonstrates the power of cancer organoid-based drug discovery and, in principle, identifies SRT1720 as a new treatment for bladder cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Organoid-based epigenetics drug library screening identified SRT1720 as a candidate drug for bladder cancer.
Fig. 2: SRT1720 inhibited the growth of mouse bladder cancer organoids in vitro and organoids-derived orthotopic cancer in vivo.
Fig. 3: Validating SIRT1 as the target of SRT1720 in bladder cancer.
Fig. 4: SRT1720 repressed the HIF pathway in bladder cancer.
Fig. 5: SRT1720 inhibited the growth of bladder cancer through downregulating the HIF pathway.
Fig. 6: SRT1720 inhibited the growth of bladder cancer in patient-derived organoids and xenografts.
Fig. 7: SRT1720 downregulated the hypoxia pathway through activating SIRT1 to inhibit the growth of human bladder cancer.

Similar content being viewed by others

Data availability

All bulk RNA data generated by this study have been deposited in the GEO data sets (https://www.ncbi.nlm.nih.gov/gds). The data can be accessed under the accession number GSE155525. The code is available from the authors on request.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    PubMed  Google Scholar 

  2. Berdik C. Unlocking bladder cancer. Nature. 2017;551:S34–S35.

  3. Vlachostergios PJ, Faltas BM. Treatment resistance in urothelial carcinoma: an evolutionary perspective. Nat Rev Clin Oncol. 2018;15:495–509.

    Article  CAS  PubMed  Google Scholar 

  4. Loriot Y, Necchi A, Park SH, Garcia-Donas J, Huddart R, Burgess E, et al. Erdafitinib in locally advanced or metastatic urothelial carcinoma. N Engl J Med. 2019;381:338–48.

    Article  CAS  PubMed  Google Scholar 

  5. Gillet J-P, Calcagno AM, Varma S, Marino M, Green LJ, Vora MI, et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci USA. 2011;108:18708–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Willyard C. The boom in mini stomachs, brains, breasts, kidneys and more. Nature. 2015;523:520–2.

    Article  CAS  PubMed  Google Scholar 

  7. Huch M, Boj SF, Clevers H. Lgr5(+) liver stem cells, hepatic organoids and regenerative medicine. Regen Med. 2013;8:385–7.

    Article  CAS  PubMed  Google Scholar 

  8. Van De Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161:933–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lee SH, Hu W, Matulay JT, Silva MV, Owczarek TB, Kim K, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell. 2018;173:515–28.e517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Drost J, Clevers H. Translational applications of adult stem cell-derived organoids. Development. 2017;144:968–75.

    Article  CAS  PubMed  Google Scholar 

  11. Mullenders J, De Jongh E, Brousali A, Roosen M, Blom JP, Begthel H, et al. Mouse and human urothelial cancer organoids: a tool for bladder cancer research. Proc Natl Acad Sci USA. 2019;116:4567–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell. 2017;171:540–56.e525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Network CGAR. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507:315–22.

    Article  CAS  Google Scholar 

  14. Wolff EM, Liang G, Jones PA. Mechanisms of disease: genetic and epigenetic alterations that drive bladder cancer. Nat Clin Pract Urol. 2005;2:502–10.

    Article  CAS  PubMed  Google Scholar 

  15. Knowles MA, Hurst CD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer. 2015;15:25–41.

    Article  CAS  PubMed  Google Scholar 

  16. Choi W, Porten S, Kim S, Willis D, Plimack ER, Hoffman-Censits J, et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell. 2014;25:152–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yates DR, Rehman I, Abbod MF, Meuth M, Cross SS, Linkens DA, et al. Promoter hypermethylation identifies progression risk in bladder cancer. Clin Cancer Res. 2007;13:2046–53.

    Article  CAS  PubMed  Google Scholar 

  18. Dudziec E, Miah S, Choudhry HM, Owen HC, Blizard S, Glover M, et al. Hypermethylation of CpG islands and shores around specific microRNAs and mirtrons is associated with the phenotype and presence of bladder cancer. Clin Cancer Res. 2011;17:1287–96.

    Article  CAS  PubMed  Google Scholar 

  19. Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007;450:712–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu B, Pan X, Chen X, Chen M, Shi K, Xu J, et al. Epigenetic drug library screening identified an LSD1 inhibitor to target UTX-deficient cells for differentiation therapy. Signal Transduct Target Ther. 2019;4:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Chen J, Zhao L, Peng H, Dai S, Quan Y, Wang M, et al. An organoid-based drug screening identified a menin-MLL inhibitor for endometrial cancer through regulating the HIF pathway. Cancer Gene Ther. 2021;28:112–5.

  22. Groselj B, Kerr M, Kiltie AE. Radiosensitisation of bladder cancer cells by panobinostat is modulated by Ku80 expression. Radiother Oncol. 2013;108:429–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang Z, He L, Lin K, Zhang Y, Deng A, Liang Y, et al. The KMT1A-GATA3-STAT3 circuit is a novel self-renewal signaling of human bladder cancer stem cells. Clin Cancer Res. 2017;23:6673–85.

    Article  CAS  PubMed  Google Scholar 

  24. Süssmuth SD, Haider S, Landwehrmeyer GB, Farmer R, Frost C, Tripepi G, et al. An exploratory double‐blind, randomized clinical trial with selisistat, a SirT1 inhibitor, in patients with H untington’s disease. Br J Clin Pharmacol. 2015;79:465–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Van Der Meer AJ, Scicluna BP, Moerland PD, Lin J, Jacobson EW, Vlasuk GP, et al. The selective sirtuin 1 activator SRT2104 reduces endotoxin-induced cytokine release and coagulation activation in humans. Crit Care Med. 2015;43:e199–202.

    Article  PubMed  CAS  Google Scholar 

  26. Julien C, Tremblay C, Émond V, Lebbadi M, Salem N Jr, Bennett DA, et al. Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol. 2009;68:48–58.

    Article  CAS  PubMed  Google Scholar 

  27. Deng C-X. SIRT1, is it a tumor promoter or tumor suppressor? Int J Biol Sci. 2009;5:147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45:1113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Saunders L, Verdin E. Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene. 2007;26:5489–504.

    Article  CAS  PubMed  Google Scholar 

  30. Lee JT, Gu W. SIRT1: regulator of p53 deacetylation. Genes Cancer. 2013;4:112–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li H-T, Duymich CE, Weisenberger DJ, Liang G. Genetic and epigenetic alterations in bladder cancer. Int Neurourol J. 2016;20:S84.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Faleiro I, Leão R, Binnie A, De Mello RA, Maia A-T, Castelo-Branco P. Epigenetic therapy in urologic cancers: an update on clinical trials. Oncotarget. 2017;8:12484.

    Article  PubMed  Google Scholar 

  33. Mitchell SJ, Martin-Montalvo A, Mercken EM, Palacios HH, Ward TM, Abulwerdi G, et al. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep. 2014;6:836–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zeng L, Chen R, Liang F, Tsuchiya H, Murai H, Nakahashi T, et al. Silent information regulator, Sirtuin 1, and age‐related diseases. Geriatrics Gerontol Int. 2009;9:7–15.

    Article  Google Scholar 

  35. Carafa V, Altucci L, Nebbioso A. Dual tumor suppressor and tumor promoter action of sirtuins in determining malignant phenotype. Front Pharmacol. 2019;10:38.

  36. Hu Q, Wang G, Peng J, Qian G, Jiang W, Xie C, et al. Knockdown of SIRT1 suppresses bladder cancer cell proliferation and migration and induces cell cycle arrest and antioxidant response through FOXO3a-mediated pathways. Biomed Res Int. 2017;2017:3781904.

  37. Chen J, Cao L, Li Z, Li Y. SIRT1 promotes GLUT1 expression and bladder cancer progression via regulation of glucose uptake. Hum Cell. 2019;32:193–201.

    Article  CAS  PubMed  Google Scholar 

  38. Dioum EM, Chen R, Alexander MS, Zhang Q, Hogg RT, Gerard RD, et al. Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science. 2009;324:1289–93.

    Article  CAS  PubMed  Google Scholar 

  39. Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell. 2010;38:864–78.

    Article  CAS  PubMed  Google Scholar 

  40. Laemmle A, Lechleiter A, Roh V, Schwarz C, Portmann S, Furer C, et al. Inhibition of SIRT1 impairs the accumulation and transcriptional activity of HIF-1α protein under hypoxic conditions. PLoS One. 2012;7:e33433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Joo HY, Yun M, Jeong J, Park ER, Shin HJ, Woo SR, et al. SIRT1 deacetylates and stabilizes hypoxia-inducible factor-1α (HIF-1α) via direct interactions during hypoxia. Biochem Biophys Res Commun. 2015;462:294–300.

    Article  CAS  PubMed  Google Scholar 

  42. Shin DH, Choi YJ, Park JW. SIRT1 and AMPK mediate hypoxia-induced resistance of non-small cell lung cancers to cisplatin and doxorubicin. Cancer Res. 2014;74:298–308.

    Article  CAS  PubMed  Google Scholar 

  43. Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40:294–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen R, Dioum EM, Hogg RT, Gerard RD, Garcia JA. Hypoxia increases sirtuin 1 expression in a hypoxia-inducible factor-dependent manner. J Biol Chem. 2011;286:13869–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Geng H, Liu Q, Xue C, David LL, Beer TM, Thomas GV, et al. HIF1α protein stability is increased by acetylation at lysine 709. J Biol Chem. 2012;287:35496–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Farghali H, Kemelo MK, Canová NK. SIRT1 modulators in experimentally induced liver injury. Oxid Med Cell Longev. 2019;2019:8765954.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Sun J, He X, Zhu Y, Ding Z, Dong H, Feng Y, et al. SIRT1 activation disrupts maintenance of myelodysplastic syndrome stem and progenitor cells by restoring TET2 function. Cell Stem Cell. 2018;23:355–69.e359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chini CC, Espindola-Netto JM, Mondal G, Guerrico AM, Nin V, Escande C, et al. SIRT1-activating compounds (STAC) negatively regulate pancreatic cancer cell growth and viability through a SIRT1 lysosomal-dependent pathway. Clin Cancer Res. 2016;22:2496–507.

    Article  CAS  PubMed  Google Scholar 

  49. Wang Y, Bi Y, Chen X, Li C, Li Y, Zhang Z, et al. Histone deacetylase SIRT1 negatively regulates the differentiation of interleukin-9-producing CD4(+) T cells. Immunity. 2016;44:1337–49.

    Article  CAS  PubMed  Google Scholar 

  50. Zhao H, Yan C, Hu Y, Mu L, Huang K, Li Q, et al. Sphere‑forming assay vs. organoid culture: Determining long‑term stemness and the chemoresistant capacity of primary colorectal cancer cells. Int J Oncol. 2019;54:893–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lahusen TJ, Deng CX. SRT1720 induces lysosomal-dependent cell death of breast cancer cells. Mol Cancer Ther. 2015;14:183–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all Chen-Liu laboratory members for their invaluable suggestions and technical support, and Wei team members for patient counseling.

Funding

This work was supported by the National Key R&D Program of China (Grant No. 2017YFA0505600), National Natural Science Foundation of China (Grant No. 82002692), 1.3.5. Project for Disciplines of Excellence, West China Hospital, Sichuan University (Grant No. ZYGD18011 and ZY2016104), Post-Doctor Research Project of Sichuan University (Grant No. 2021SCU12016), and Post-Doctor Research Project, West China Hospital, Sichuan University (Grant No. 19HXBH057).

Author information

Authors and Affiliations

Authors

Contributions

PT, MW, YL, CC, and QW conceived the project, designed experiments, and wrote the paper. PT, MW, YW, JD, JW, LQ, ZB, JZ, and JC performed experiments and analyzed data. PZ, TL, PH, LY, and QG did patient counseling. AZ performed RNA-seq and bioinformatics analysis.

Corresponding authors

Correspondence to Chong Chen or Qiang Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was approved by the Ethical Research Committee of the West China Hospital (2019-933/2020-330). Written informed consent was obtained from all patients involved. All patients had a confirmed pathologic diagnosis of MIBC and underwent radical cystectomy.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, P., Wang, M., Zhong, A. et al. SRT1720 inhibits the growth of bladder cancer in organoids and murine models through the SIRT1-HIF axis. Oncogene 40, 6081–6092 (2021). https://doi.org/10.1038/s41388-021-01999-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01999-9

This article is cited by

Search

Quick links