Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PHF10 subunit of PBAF complex mediates transcriptional activation by MYC

Abstract

The PBAF complex, a member of SWI/SNF family of chromatin remodelers, plays an essential role in transcriptional regulation. We revealed a disease progression associated elevation of PHF10 subunit of PBAF in clinical melanoma samples. In melanoma cell lines, PHF10 interacts with MYC and facilitates the recruitment of PBAF complex to target gene promoters, therefore, augmenting MYC transcriptional activation of genes involved in the cell cycle progression. Depletion of either PHF10 or MYC induced G1 accumulation and a senescence-like phenotype. Our data identify PHF10 as a pro-oncogenic mechanism and an essential novel link between chromatin remodeling and MYC-dependent gene transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PHF10 mRNA expression (RSEM counts) in cutaneous melanoma.
Fig. 2: MYC interacts with PBAF complex in melanoma cells.
Fig. 3: Influence of PHF10 knockdown on MYC-PBAF interaction in A375 cells.
Fig. 4: MYC regions responsible for interaction with PHF10.
Fig. 5: PHF10 knockdown decreases MYC reporter transactivation in HEK293T cells.
Fig. 6: Depletion of PHF10 or MYC induces similar changes in global gene expression.
Fig. 7: PHF10 cooperates with MYC-dependent transcription in A375 melanoma cells.
Fig. 8: Role of PHF10 and MYC knockdown in senescence and cell cycle distribution in melanoma cells.
Fig. 9: MYC and PBAF cooperate in activation of genes involved in proliferation.

Similar content being viewed by others

References

  1. Kadoch C, Crabtree GR. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci Adv. 2015;197:804–9.

    Google Scholar 

  2. Alfert A, Moreno N, Kerl K. The BAF complex in development and disease. Epigenetics Chromatin. 2019;12:1–15.

    Article  Google Scholar 

  3. Centore RC, Sandoval GJ, Soares LMM, Kadoch C, Chan HM. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies. Trends Genet. 2020;36:936–50.

    Article  CAS  PubMed  Google Scholar 

  4. Phelan ML, Sif S, Narlikar GJ, Kingston RE. Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol Cell. 1999;3:247–53.

    Article  CAS  PubMed  Google Scholar 

  5. Trotter KW, Archer TK. The BRG1 transcriptional coregulator. Nucl Recept Signal. 2008;6:e004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ishizaka A, Mizutani T, Kobayashi K, Tando T, Sakurai K, Fujiwara T, et al. Double plant homeodomain (PHD) finger proteins DPF3a and -3b are required as transcriptional co-activators in SWI/SNF complex-dependent activation of NF-κB RelA/p50 heterodimer. J Biol Chem. 2012;287:11924–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Versteege I, Sevenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R, et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature. 1998;394:203–6.

    Article  CAS  PubMed  Google Scholar 

  8. Roberts СW, Galusha SA, McMenamin ME, Fletcher CD, Orkin SH. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. PNAS. 2000;5:13796–800.

    Article  Google Scholar 

  9. Middeljans E, Wan X, Jansen PW, Sharma V, Stunnenberg HG, Logie C. SS18 together with animal-specific factors defines human BAF-type SWI/SNF complexes. PLoS ONE. 2012;7:e33834.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Crew AJ, Clark J, Fisher C, Gill S, Grimer R, Chand A, et al. Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the Kruppel-associated box in human synovial sarcoma. EMBO J. 1995;14:2333–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kadoch C, Hargreaves DC, Hodges C, Elias L, Ho L, Ranish J, et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet. 2013;45:592–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Poole CJ, van Riggelen J. MYC—master regulator of the cancer epigenome and transcriptome. Genes (Basel). 2017;8:142.

    Article  CAS  Google Scholar 

  13. Dang CV. MYC on the path to cancer. Cell. 2012;149:22–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brechalov AV, Georgieva SG, Soshnikova NV. Mammalian cells contain two functionally distinct PBAF complexes incorporating different isoforms of PHF10 signature subunit. Cell Cycle. 2014;13:1970–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mashtalir N, D’Avino AR, Michel BC, Luo J, Pan J, Otto JE, et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell. 2018;175:1272–88.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zeng L, Zhang Q, Li S, Plotnikov AN, Walsh MJ, Zhou M, et al. Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature. 2010;466:258–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Soshnikova NV, Sheynov AA, Tatarskiy EV, Georgieva SG. The DPF domain as a unique structural unit participating in transcriptional activation, cell differentiation, and malignant. Transformation. 2020;12:115–23.

    Google Scholar 

  18. Shidlovskii YV, Krasnov AN, Nikolenko JV, Lebedeva LA, Kopantseva M, Ermolaeva MA, et al. A novel multidomain transcription coactivator SAYP can also repress transcription in heterochromatin. EMBO J. 2005;24:97–107.

    Article  CAS  PubMed  Google Scholar 

  19. Chalkley GE, Moshkin YM, Langenberg K, Bezstarosti K, Blastyak A, Gyurkovics H, et al. The transcriptional coactivator SAYP is a trithorax group signature subunit of the PBAP chromatin remodeling complex. Mol Cell Biol. 2008;28:2920–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vorobyeva NE, Soshnikova NV, Nikolenko JV, Kuzmina JL, Nabirochkina EN, Georgieva S, et al. Transcription coactivator SAYP combines chromatin remodeler Brahma and transcription initiation factor TFIID into a single supercomplex. Proc Natl Acad Sci USA. 2009;106:11049–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lessard J, Wu JI, Ranish JA, Wan M, Winslow MM, Staahl B, et al. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron. 2007;55:201–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Krasteva V, Crabtree GR, Lessard JA. The BAF45a/PHF10 subunit of SWI/SNF-like chromatin remodeling complexes is essential for hematopoietic stem cell maintenance. Exp Hematol. 2017;48:58–71.e15.

    Article  CAS  PubMed  Google Scholar 

  23. Viryasova GM, Tatarskiy VV Jr, Sheynov AA, Tatarskiy EV, Sud’ina GF, Georgieva SG, et al. PBAF lacking PHD domains maintains transcription in human neutrophils. Biochim Biophys Acta Mol Cell Res. 2019;1866:118525.

    Article  PubMed  CAS  Google Scholar 

  24. Cheng SW, Davies KP, Yung E, Beltran RJ, Yu J, Kalpana GV. c-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function. Nat Genet. 1999;22:102–5.

    Article  CAS  PubMed  Google Scholar 

  25. Stojanova A, Tu WB, Ponzielli R, Kotlyar M, Chan P, Boutros PC, et al. MYC interaction with the tumor suppressive SWI/SNF complex member INI1 regulates transcription and cellular transformation. Cell Cycle. 2016;15:1693–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park J, Wood MA, Cole MD. BAF53 forms distinct nuclear complexes and functions as a critical c-Myc-interacting nuclear cofactor for oncogenic transformation. Mol Cell Biol. 2002;22:1307–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhuang D, Mannava S, Grachtchouk V, Tang W-H, Wawrzyniak JA, Berman AE, et al. c-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene. 2008;27:6623–34.

    Article  CAS  PubMed  Google Scholar 

  28. Sammak S, Allen MD, Hamdani N, Bycroft M, Zinzalla G. The structure of INI1/hSNF5 RPT1 and its interactions with the c-MYC:MAX heterodimer provide insights into the interplay between MYC and the SWI/SNF chromatin remodeling complex. FEBS J. 2018;285:4165–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Banga SS, Peng L, Dasgupta T, Palejwala V, Ozer HL. PHF10 is required for cell proliferation in normal and SV40-immortalized human fibroblast cells. Cytogenet Genome Res. 2010;126:227–42.

    Article  PubMed Central  CAS  Google Scholar 

  30. Panov VV, Kuzmina JL, Doronin SA, Kopantseva MR, Nabirochkina EN, Georgieva SG, et al. Transcription co-activator SAYP mediates the action of STAT activator. Nucleic Acids Res. 2012;40:2445–53.

    Article  CAS  PubMed  Google Scholar 

  31. Vorobyeva NE, Nikolenko JV, Nabirochkina EN, Krasnov AN, Shidlovskii YV, Georgieva SG, et al. SAYP and Brahma are important for ‘repressive’ and ‘transient’ Pol II pausing. Nucleic Acids Res. 2012;40:7319–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. García-Gutiérrez L, Delgado MD, León J. Myc oncogene contributions to release of cell cycle brakes. Genes (Basel). 2019;10:244.

    Article  CAS  Google Scholar 

  33. Mittal P, Roberts CWM. The SWI/SNF complex in cancer—biology, biomarkers and therapy. Nat Rev Clin Oncol. 2020;17:435–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ribeiro-Silva C, Vermeulen W, Lans H. SWI/SNF: complex complexes in genome stability and cancer. DNA Repair (Amst). 2019;77:87–95.

    Article  CAS  PubMed  Google Scholar 

  35. Masliah-Planchon J, Bièche I, Guinebretière J-M, Bourdeaut F, Delattre O. SWI/SNF chromatin remodeling and human malignancies.Annu Rev Pathol. 2015;10:145–71. https://doi.org/10.1146/annurev-pathol-012414-040445.

    Article  CAS  PubMed  Google Scholar 

  36. Biegel JA, Zhou JY, Rorke LB, Stenstrom LB, Wainwright LM, Fogelgren B, et al. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res. 1999;59:74–79.

    CAS  PubMed  Google Scholar 

  37. Sévenet N, Sheridan E, Amram D, Schneider P, Handgretinger R, Delattre O. Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am J Hum Genet. 1999;65:1342–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lu B, Shi H. An in-depth look at small cell carcinoma of the ovary, hypercalcemic type (SCCOHT): Clinical implications from recent molecular findings. J Cancer. 2019;10:223–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Buscarlet M, Krasteva V, Ho L, Simon C, Hebert J, Wilhelm B, et al. Essential role of BRG, the ATPase subunit of BAF chromatin remodeling complexes, in leukemia maintenance. Blood. 2014;123:1720–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Saladi SV, de la Serna IL. ATP dependent chromatin remodeling enzymes in embryonic stem cells. Bone. 2010;6:62–73.

    CAS  Google Scholar 

  41. Anbunathan H, Verstraten R, Singh AD, Harbour WJ, Bowcock AM. Integrative copy number analysis of uveal melanoma reveals novel candidate genes involved in tumorigenesis including a tumor suppressor role for PHF10/BAF45A. Clin Cancer Res. 2019;25:5156–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bagnasco L, Tortolina L, Biasotti B, Castagnino N, Ponassi R, Tomati V, et al. Inhibition of a protein‐protein interaction between INI1 and c‐Myc by small peptidomimetic molecules inspired by Helix‐1 of c‐Myc: identification of a new target of potential antineoplastic interest. FASEB J. 2007;21:1256–63.

    Article  CAS  PubMed  Google Scholar 

  43. Shin KJ, Wall EA, Zavzavadjian JR, Santat LA, Liu J, Hwang J, et al. A single lentiviral vector platform for microRNA-based conditional RNA interference and coordinated transgene expression. Proc Natl Acad Sci USA. 2006;103:13759–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS, et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA. 2003;9:493–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hermeking H, Rago C, Schuhmacher M, Li Q, Barrett JF, Obaya AJ, et al. Identification of CDK4 as a target of c-MYC. Proc Natl Acad Sci USA. 2000;97:2229–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brechalov AV, Valieva ME, Georgieva SG, Soshnikova NV. PHF10 isoforms are phosphorylated in the PBAF mammalian chromatin remodeling complex. Mol Biol. 2016;50:278–83.

    Article  CAS  Google Scholar 

  47. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12.

    Article  Google Scholar 

  48. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  CAS  PubMed  Google Scholar 

  49. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009;26:139–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019;47:W199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Croft D, Mundo AF, Haw R, Milacic M, Weiser., Wu G, et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 2014;42:472–7.

    Article  CAS  Google Scholar 

  53. Ramírez F, Dündar F, Diehl S, Grüning BA, Manke T. DeepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 2014;42:187–91.

    Article  CAS  Google Scholar 

  54. Egorov AA, Sakharova EA, Anisimova AS, Dmitriev SE, Gladyshev VN, Kulakovskiy IV. Svist4get: a simple visualization tool for genomic tracks from sequencing experiments. BMC Bioinforma. 2019;20:4–9.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Center for Precision Genome Editing and Genetic Technologies for Biomedicine (Institute of Gene Biology) supported by Ministry of Science and Higher Education of the Russian Federation (075-15-2019-1661) for providing the equipment.

Funding

This study was supported by the Russian Foundation of Basic Research (grant #17-54-33031 (to SGG) and NIH R21 CA220096 grant (to MAN).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: NVS, MAN, SGG, AAS; methodology: NVS, VVT, NSK, AAS; validation: VVT, EVT, NSK; investigation: NVS, EVT, NSK, VVT; resources: EVT, SGG; data curation: NVS, VVT, NSK; writing (original draft): NVS, SGG, AAS, NSK; writing (review and editing): NVS, SGG, AAS, MAN; visualization: NVS, VVT, EVT, NSK; supervision: SGG; project administration: NVS, SGG, MAN; funding acquisition: SGG, MAN.

Corresponding authors

Correspondence to N. V. Soshnikova or S. G. Georgieva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Edited by Professor Reuven Agami.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soshnikova, N.V., Tatarskiy, E.V., Tatarskiy, V.V. et al. PHF10 subunit of PBAF complex mediates transcriptional activation by MYC. Oncogene 40, 6071–6080 (2021). https://doi.org/10.1038/s41388-021-01994-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01994-0

This article is cited by

Search

Quick links