Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sirt1 deficiency upregulates glutathione metabolism to prevent hepatocellular carcinoma initiation in mice

Abstract

Sirtuin-1 (SIRT1) is involved in various metabolic pathways, including fatty acid synthesis and gluconeogenesis in the liver. However, its role in initiation and progression of liver cancer remains unclear. Studying Sirt1 liver-specific knockout (LKO) mice in combination with diethylnitrosamine (DEN) treatment, we demonstrated that loss of Sirt1 rendered mice resistant to DEN-induced hepatocellular carcinoma (HCC) development. RNA-seq revealed that livers from LKO mice exhibited an enrichment in glutathione metabolism eight months after DEN challenge. Sirt1 deficiency elevated the expression of glutathione-s-transferase family genes by increasing the level of Nrf2, a key regulator of glutathione metabolism. Hence, LKO livers displayed a reductive environment with an increased ratio of GSH to GSSG and an elevated GSH level. Furthermore, using CRISPR knockout techniques, we confirmed that the impairment of HCC formation in LKO mice is mainly dependent on NRF2 signaling. Meanwhile, HCC induced by DEN could be blocked by the administration of N-acetyl cysteine (NAC) when administered one month after DEN challenge. However, NAC treatment starting five months after DEN injection was not able to prevent tumor development. In conclusion, our findings indicate that a reductive environment orchestrated by glutathione metabolism at an early stage can prevent the initiation of HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sirt1 LKO mice resist HCC formation after DEN challenge.
Fig. 2: Sirt1 deficiency reduces cell proliferation after DEN treatment.
Fig. 3: Sirt1 deficiency enhances glutathione metabolism in liver with DEN treatment.
Fig. 4: Increased Nrf2 activity in LKO regulates glutathione genes in DEN treatment.
Fig. 5: Knockout Nrf2 in Sirt1 LKO mice augments DEN induced HCC growth.
Fig. 6: Pretreatment of antioxidant reduces DEN induced tumor growth.

Similar content being viewed by others

Data availability

All RNA-sequencing data generated in this study have been deposited in GEO (https://www.ncbi.nlm.nih.gov/geo/) under the accession number PRJNA728801.

References

  1. Imai S, Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014;24:464–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004;303:2011–5.

    Article  CAS  PubMed  Google Scholar 

  3. Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell. 2001;107:137–48.

    Article  CAS  PubMed  Google Scholar 

  4. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001;107:149–59.

    Article  CAS  PubMed  Google Scholar 

  5. Wang C, Chen L, Hou X, Li Z, Kabra N, Ma Y, et al. Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol. 2006;8:1025–31.

    Article  CAS  PubMed  Google Scholar 

  6. Wong S, Weber JD. Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1. Biochem J. 2007;407:451–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deng CX. SIRT1, is it a tumor promoter or tumor suppressor? Int J Biol Sci. 2009;5:147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang RH, Sengupta K, Li C, Kim HS, Cao L, Xiao C, et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell. 2008;14:312–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang RH, Zheng Y, Kim HS, Xu X, Cao L, Luhasen T, et al. Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol Cell. 2008;32:11–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004;23:2369–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  12. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  13. Wai Ling Khoo TS, Rehman A, Olynyk JK. Tyrosine kinase inhibitors in the treatment of hepatocellular carcinoma. In: Tirnitz-Parker JEE, editor. Brisbane (AU): Hepatocellular Carcinoma; 2019.

  14. Villanueva A. Hepatocellular Carcinoma. N. Engl J Med. 2019;380:1450–62.

    Article  CAS  PubMed  Google Scholar 

  15. Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Heikenwalder M. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol. 2019;16:411–28.

    Article  PubMed  Google Scholar 

  16. Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010;44:479–96.

    Article  CAS  PubMed  Google Scholar 

  17. Agarwal A, Munoz-Najar U, Klueh U, Shih SC, Claffey KP. N-acetyl-cysteine promotes angiostatin production and vascular collapse in an orthotopic model of breast cancer. Am J Pathol. 2004;164:1683–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cabello CM, Bair WB 3rd, Wondrak GT. Experimental therapeutics: targeting the redox Achilles heel of cancer. Curr Opin Investig Drugs. 2007;8:1022–37.

    CAS  PubMed  Google Scholar 

  19. Huang ZZ, Chen C, Zeng Z, Yang H, Oh J, Chen L, et al. Mechanism and significance of increased glutathione level in human hepatocellular carcinoma and liver regeneration. FASEB J. 2001;15:19–21.

    Article  PubMed  Google Scholar 

  20. Kang JS, Wanibuchi H, Morimura K, Gonzalez FJ, Fukushima S. Role of CYP2E1 in diethylnitrosamine-induced hepatocarcinogenesis in vivo. Cancer Res. 2007;67:11141–6.

    Article  CAS  PubMed  Google Scholar 

  21. Yang CS, Yoo JS, Ishizaki H, Hong JY. Cytochrome P450IIE1: roles in nitrosamine metabolism and mechanisms of regulation. Drug Metab Rev. 1990;22:147–59.

    Article  CAS  PubMed  Google Scholar 

  22. Alves-Fernandes DK, Jasiulionis MG. The role of SIRT1 on DNA damage response and epigenetic alterations in cancer. Int J Mol Sci. 2019;20:3153.

    Article  PubMed Central  CAS  Google Scholar 

  23. Jeong J, Juhn K, Lee H, Kim SH, Min BH, Lee KM, et al. SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp Mol Med. 2007;39:8–13.

    Article  CAS  PubMed  Google Scholar 

  24. Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park SK, et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell. 2008;135:907–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Palacios JA, Herranz D, De Bonis ML, Velasco S, Serrano M, Blasco MA. SIRT1 contributes to telomere maintenance and augments global homologous recombination. J Cell Biol. 2010;191:1299–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Malhi H, Guicciardi ME, Gores GJ. Hepatocyte death: a clear and present danger. Physiol Rev. 2010;90:1165–94.

    Article  CAS  PubMed  Google Scholar 

  27. Maeda S, Kamata H, Luo JL, Leffert H, Karin M. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell. 2005;121:977–90.

    Article  CAS  PubMed  Google Scholar 

  28. Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 2010;140:197–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang RH, Li C, Deng CX. Liver steatosis and increased ChREBP expression in mice carrying a liver specific SIRT1 null mutation under a normal feeding condition. Int J Biol Sci. 2010;6:682–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Malhotra D, Portales-Casamar E, Singh A, Srivastava S, Arenillas D, Happel C, et al. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic Acids Res. 2010;38:5718–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alam J, Stewart D, Touchard C, Boinapally S, Choi AM, Cook JLNrf2. a Cap’n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem. 1999;274:26071–8.

    Article  CAS  PubMed  Google Scholar 

  32. Jayakumar S, Pal D, Sandur SK. Nrf2 facilitates repair of radiation induced DNA damage through homologous recombination repair pathway in a ROS independent manner in cancer cells. Mutat Res. 2015;779:33–45.

    Article  CAS  PubMed  Google Scholar 

  33. Frohlich DA, McCabe MT, Arnold RS, Day ML. The role of Nrf2 in increased reactive oxygen species and DNA damage in prostate tumorigenesis. Oncogene. 2008;27:4353–62.

    Article  CAS  PubMed  Google Scholar 

  34. Kim SB, Pandita RK, Eskiocak U, Ly P, Kaisani A, Kumar R, et al. Targeting of Nrf2 induces DNA damage signaling and protects colonic epithelial cells from ionizing radiation. Proc Natl Acad Sci USA. 2012;109:E2949–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Amini A, Masoumi-Moghaddam S, Ehteda A, Morris DL. Bromelain and N-acetylcysteine inhibit proliferation and survival of gastrointestinal cancer cells in vitro: significance of combination therapy. J Exp Clin Cancer Res. 2014;33:92.

    PubMed  PubMed Central  Google Scholar 

  36. Deng J, Liu AD, Hou GQ, Zhang X, Ren K, Chen XZ, et al. N-acetylcysteine decreases malignant characteristics of glioblastoma cells by inhibiting Notch2 signaling. J Exp Clin Cancer Res. 2019;38:2.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Portmann S, Fahrner R, Lechleiter A, Keogh A, Overney S, Laemmle A, et al. Antitumor effect of SIRT1 inhibition in human HCC tumor models in vitro and in vivo. Mol Cancer Ther. 2013;12:499–508.

    Article  CAS  PubMed  Google Scholar 

  38. Mao B, Hu F, Cheng J, Wang P, Xu M, Yuan F, et al. SIRT1 regulates YAP2-mediated cell proliferation and chemoresistance in hepatocellular carcinoma. Oncogene. 2014;33:1468–74.

    Article  CAS  PubMed  Google Scholar 

  39. Kolaja KL, Klaunig JE. Vitamin E modulation of hepatic focal lesion growth in mice. Toxicol Appl Pharm. 1997;143:380–7.

    Article  CAS  Google Scholar 

  40. Jungst C, Cheng B, Gehrke R, Schmitz V, Nischalke HD, Ramakers J, et al. Oxidative damage is increased in human liver tissue adjacent to hepatocellular carcinoma. Hepatology. 2004;39:1663–72.

    Article  PubMed  CAS  Google Scholar 

  41. Tanaka H, Fujita N, Sugimoto R, Urawa N, Horiike S, Kobayashi Y, et al. Hepatic oxidative DNA damage is associated with increased risk for hepatocellular carcinoma in chronic hepatitis C. Br J Cancer. 2008;98:580–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Higgs MR, Chouteau P, Lerat H. ‘Liver let die’: oxidative DNA damage and hepatotropic viruses. J Gen Virol. 2014;95:991–1004.

    Article  CAS  PubMed  Google Scholar 

  43. Satoh H, Moriguchi T, Takai J, Ebina M, Yamamoto M. Nrf2 prevents initiation but accelerates progression through the Kras signaling pathway during lung carcinogenesis. Cancer Res. 2013;73:4158–68.

    Article  CAS  PubMed  Google Scholar 

  44. Satoh H, Moriguchi T, Saigusa D, Baird L, Yu L, Rokutan H, et al. NRF2 intensifies host defense systems to prevent lung carcinogenesis, but after tumor initiation accelerates malignant cell growth. Cancer Res. 2016;76:3088–96.

    Article  CAS  PubMed  Google Scholar 

  45. Kawai Y, Garduno L, Theodore M, Yang J, Arinze IJ. Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization. J Biol Chem. 2011;286:7629–40.

    Article  CAS  PubMed  Google Scholar 

  46. Circu ML, Aw TY. Glutathione and modulation of cell apoptosis. Biochim Biophys Acta. 2012;1823:1767–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Atkuri KR, Cowan TM, Kwan T, Ng A, Herzenberg LA, Herzenberg LA, et al. Inherited disorders affecting mitochondrial function are associated with glutathione deficiency and hypocitrullinemia. Proc Natl Acad Sci USA. 2009;106:3941–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cuadrado A, Garcia-Fernandez LF, Gonzalez L, Suarez Y, Losada A, Alcaide V, et al. Aplidin induces apoptosis in human cancer cells via glutathione depletion and sustained activation of the epidermal growth factor receptor, Src, JNK, and p38 MAPK. J Biol Chem. 2003;278:241–50.

    Article  CAS  PubMed  Google Scholar 

  49. Shi ZZ, Osei-Frimpong J, Kala G, Kala SV, Barrios RJ, Habib GM, et al. Glutathione synthesis is essential for mouse development but not for cell growth in culture. Proc Natl Acad Sci USA. 2000;97:5101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang RH, Kim HS, Xiao C, Xu X, Gavrilova O, Deng CX. Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J Clin Invest. 2011;121:4477–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms. Ragini Bhalchandra Adhav for helping analyze ChIP-seq data, and other members of Xu lab for helpful discussion. We also thank Dr. Yiwei Cao, Dr. Hao Xiao and Mr. Haibin Yang for collecting animal tissues, and FHS Animal Research Core for providing animal housing.

Funding

This project was supported by grants SRG2015-00008-FHS, MYRG2016-00054-FHS and MYRG2017-00096-FHS to RHW; MYRG2019-0064-FHS to XLX; and CPG2020-00004-FHS to CXD from the University of Macau.

Author information

Authors and Affiliations

Authors

Contributions

PQ, WH: designed and optimized experiments, analyzed and interpreted data, drafted and edited the final paper; PQ, WH, HW, WC: analysis of data, preparing figures; KKWL, SW, SSMS, LAP, and QC: optimized experiments; KP, YS, and DSS: edited and reviewed final paper; CXD, XX, and RW: designed the project, analyzed and interpreted the data, edited and finalized the paper.

Corresponding authors

Correspondence to Chu-Xia Deng, Xiaoling Xu or Ruihong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Editor: Professor Jun Yu

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, P., Hou, W., Wang, H. et al. Sirt1 deficiency upregulates glutathione metabolism to prevent hepatocellular carcinoma initiation in mice. Oncogene 40, 6023–6033 (2021). https://doi.org/10.1038/s41388-021-01993-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01993-1

This article is cited by

Search

Quick links