Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anoikis resistant gastric cancer cells promote angiogenesis and peritoneal metastasis through C/EBPβ-mediated PDGFB autocrine and paracrine signaling

A Correction to this article was published on 19 January 2022

This article has been updated

Abstract

Anoikis is a type of programmed cell death induced by loss of anchorage to the extracellular matrix (ECM). Anoikis resistance (AR) is crucial for the survival of metastatic cancer cells in blood, lymphatic circulation and distant organs. Compared to ordinary cancer cells, anoikis resistant cancer cells undergo various cellular and molecular alterations, probably characterizing the cells with unique features not limited to anoikis resistance. However, the molecular mechanisms connecting anoikis resistance to other metastatic properties are still poorly understood. Here, the biological interaction between anoikis resistance and angiogenesis as well as their involvement into peritoneal metastasis of gastric cancer (GC) were investigated in vitro and in vivo. The prognostic value of key components involved in this interaction was evaluated in the GC cohort. Compared to ordinary GC cells, GCAR cells exhibited stronger metastatic and pro-angiogenic traits corresponding to elevated PDGFB secretion. Mechanistically, transcription factor C/EBPβ facilitated PDGFB transcription by directly binding to and interacting with PDGFB promoter elements, subsequently increasing PDGFB secretion. Secreted PDGFB promoted the survival of detached GC cells through a C/EBPβ-dependent self-feedback loop. Moreover, secreted PDGFB promoted angiogenesis in metastases via activation of the MAPK/ERK signaling pathway in vascular endothelial cells. Both C/EBPβ activation level and PDGFB expression were significantly elevated in GC and correlated with metastatic progression and poor prognosis of patients with GC. Overall, interaction between GCAR cells and vascular endothelial cells promotes angiogenesis and peritoneal metastasis of GC based on C/EBPβ-mediated PDGFB autocrine and paracrine signaling. C/EBPβ-PDGFB-PDGFRβ-MAPK axis promises to be potential prognostic biomarkers and therapeutic targets for peritoneal metastasis of GC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GCAR cells manifest a more vigorous metastatic and pro-angiogenic trait.
Fig. 2: GCAR cells manifest stronger pro-angiogenic potential.
Fig. 3: GCAR cells promote angiogenesis through elevated secretion of PDGFB.
Fig. 4: Transcription factor C/EBPβ mediates secretion of PDGFB in gastric cancer.
Fig. 5: GCAR cells derived PDGFB promotes angiogenesis through MAPK/ERK signaling pathway.
Fig. 6: GCAR cells promote its anoikis resistance through a PDGFB-dependent autocrine pattern.
Fig. 7: C/EBPβ/PDGFB/PDGFRβ axis triggers angiogenesis and peritoneal metastasis in vivo.
Fig. 8: Elevated C/EBPB activation level and PDGFB expression correlate with poor prognosis of patients with gastric cancer.

Similar content being viewed by others

Data availability

All raw and processed RNA sequencing data of HUVEC was deposited to NCBI Genome Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under the accession numbers: GSE176441.

Change history

References

  1. McLean MH, El-Omar EM. Genetics of gastric cancer. Nat Rev Gastroenterol Hepatol. 2014;11:664–74.

    Article  CAS  PubMed  Google Scholar 

  2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  3. Shah MA. Update on metastatic gastric and esophageal cancers. J Clin Oncol. 2015;33:1760–9.

    Article  CAS  PubMed  Google Scholar 

  4. Yonemura Y, Bandou E, Kinoshita K, Kawamura T, Takahashi S, Endou Y, et al. Effective therapy for peritoneal dissemination in gastric cancer. Surg Oncol Clin N. Am. 2003;12:635–48.

    Article  PubMed  Google Scholar 

  5. Thomassen I, van Gestel YR, van Ramshorst B, Luyer MD, Bosscha K, Nienhuijs SW, et al. Peritoneal carcinomatosis of gastric origin: a population-based study on incidence, survival and risk factors. Int J Cancer. 2014;134:622–8.

    Article  CAS  PubMed  Google Scholar 

  6. Hong SH, Shin YR, Roh SY, Jeon EK, Song KY, Park CH, et al. Treatment outcomes of systemic chemotherapy for peritoneal carcinomatosis arising from gastric cancer with no measurable disease: retrospective analysis from a single center. Gastric Cancer. 2013;16:290–300.

    Article  CAS  PubMed  Google Scholar 

  7. Strilic B, Offermanns S. Intravascular survival and extravasation of tumor cells. Cancer Cell. 2017;32:282–93.

    Article  CAS  PubMed  Google Scholar 

  8. Jin K, Li T, van Dam H, Zhou F, Zhang L. Molecular insights into tumour metastasis: tracing the dominant events. J Pathol. 2017;241:567–77.

    Article  CAS  PubMed  Google Scholar 

  9. Haemmerle M, Taylor ML, Gutschner T, Pradeep S, Cho MS, Sheng J, et al. Platelets reduce anoikis and promote metastasis by activating YAP1 signaling. Nat Commun. 2017;8:310.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Buchheit CL, Weigel KJ, Schafer ZT. Cancer cell survival during detachment from the ECM: multiple barriers to tumour progression. Nat Rev Cancer. 2014;14:632–41.

    Article  CAS  PubMed  Google Scholar 

  11. Du S, Miao J, Zhu Z, Xu E, Shi L, Ai S, et al. NADPH oxidase 4 regulates anoikis resistance of gastric cancer cells through the generation of reactive oxygen species and the induction of EGFR. Cell Death Dis. 2018;9:948.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Eddy RJ, Weidmann MD, Sharma VP, Condeelis JS. Tumor cell invadopodia: invasive protrusions that orchestrate metastasis. Trends Cell Biol. 2017;27:595–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang S, Wu X, Zhang J, Chen Y, Xu J, Xia X, et al. CHIP functions as a novel suppressor of tumour angiogenesis with prognostic significance in human gastric cancer. Gut.2013;62:496–508.

    Article  CAS  PubMed  Google Scholar 

  14. Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med. 2011;17:1359–70.

    Article  CAS  PubMed  Google Scholar 

  15. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58–62.

    Article  CAS  PubMed  Google Scholar 

  16. La Porta S, Roth L, Singhal M, Mogler C, Spegg C, Schieb B, et al. Endothelial Tie1-mediated angiogenesis and vascular abnormalization promote tumor progression and metastasis. J Clin Invest. 2018;128:834–45.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kirsch M, Schackert G, Black PM. Metastasis and angiogenesis. Cancer Treat Res. 2004;117:285–304.

    Article  CAS  PubMed  Google Scholar 

  18. Kuczynski EA, Vermeulen PB, Pezzella F, Kerbel RS, Reynolds AR. Vessel co-option in cancer. Nat Rev Clin Oncol. 2019;16:469–93.

    Article  CAS  PubMed  Google Scholar 

  19. Xue Y, Lim S, Yang Y, Wang Z, Jensen LD, Hedlund EM, et al. PDGF-BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in stromal cells. Nat Med. 2011;18:100–10.

    Article  PubMed  Google Scholar 

  20. Lindahl P, Johansson BR, Levéen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science.1997;277:242–5.

    Article  CAS  PubMed  Google Scholar 

  21. Kitadai Y, Kodama M, Shinagawa K. Stroma-directed molecular targeted therapy in gastric cancer. Cancers (Basel). 2011;3:4245–57.

    Article  CAS  Google Scholar 

  22. Zhang Y, Lu H, Dazin P, Kapila Y. Squamous cell carcinoma cell aggregates escape suspension-induced, p53-mediated anoikis: fibronectin and integrin alphav mediate survival signals through focal adhesion kinase. J Biol Chem. 2004;279:48342–9.

    Article  CAS  PubMed  Google Scholar 

  23. Chung AS, Ferrara N. Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol. 2011;27:563–84.

    Article  CAS  PubMed  Google Scholar 

  24. Kipps E, Tan DS, Kaye SB. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nat Rev Cancer. 2013;13:273–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Arnaoutova I, Kleinman HK. In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat Protoc. 2010;5:628–35.

    Article  CAS  PubMed  Google Scholar 

  26. Kastana P, Zahra FT, Ntenekou D, Katraki-Pavlou S, Beis D, Lionakis MS, et al. Matrigel plug assay for in vivo evaluation of angiogenesis. Methods Mol Biol. 2019;1952:219–32.

    Article  CAS  PubMed  Google Scholar 

  27. Mazzone M, Bergers G. Regulation of blood and lymphatic vessels by immune cells in tumors and metastasis. Annu Rev Physiol. 2019;81:535–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Toubal A, Clément K, Fan R, Ancel P, Pelloux V, Rouault C, et al. SMRT-GPS2 corepressor pathway dysregulation coincides with obesity-linked adipocyte inflammation. J Clin Invest. 2013;123:362–79.

    Article  CAS  PubMed  Google Scholar 

  29. Guo L, Li X, Tang QQ. Transcriptional regulation of adipocyte differentiation: a central role for CCAAT/enhancer-binding protein (C/EBP) β. J Biol Chem. 2015;290:755–61.

    Article  CAS  PubMed  Google Scholar 

  30. Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta. 2010;1802:396–405.

    Article  CAS  PubMed  Google Scholar 

  31. Hosaka K, Yang Y, Seki T, Fischer C, Dubey O, Fredlund E, et al. Pericyte-fibroblast transition promotes tumor growth and metastasis. Proc Natl Acad Sci U.S.A. 2016;113:E5618–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta. 2013;1833:3481–98.

    Article  CAS  PubMed  Google Scholar 

  33. Avivar-Valderas A, Bobrovnikova-Marjon E, Alan Diehl J, Bardeesy N, Debnath J, Aguirre-Ghiso JA. Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK. Oncogene.2013;32:4932–40.

    Article  CAS  PubMed  Google Scholar 

  34. Chen N, Debnath J. IκB kinase complex (IKK) triggers detachment-induced autophagy in mammary epithelial cells independently of the PI3K-AKT-MTORC1 pathway. Autophagy.2013;9:1214–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ, et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet. 2011;43:869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z, Irie HY, et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature.2009;461:109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002;29:15–8.

    Article  CAS  PubMed  Google Scholar 

  38. De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17:457–74.

    Article  PubMed  Google Scholar 

  39. Liu Y, Cao X. Characteristics and significance of the pre-metastatic niche. Cancer Cell. 2016;30:668–81.

    Article  CAS  PubMed  Google Scholar 

  40. Nissen LJ, Cao R, Hedlund EM, Wang Z, Zhao X, Wetterskog D, et al. Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J Clin Invest. 2007;117:2766–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hosaka K, Yang Y, Seki T, Nakamura M, Andersson P, Rouhi P, et al. Tumour PDGF-BB expression levels determine dual effects of anti-PDGF drugs on vascular remodelling and metastasis. Nat Commun. 2013;4:2129.

    Article  PubMed  Google Scholar 

  42. Liu T, Ma W, Xu H, Huang M, Zhang D, He Z, et al. PDGF-mediated mesenchymal transformation renders endothelial resistance to anti-VEGF treatment in glioblastoma. Nat Commun. 2018;9:3439.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jitariu AA, Raica M, Cîmpean AM, Suciu SC. The role of PDGF-B/PDGFR-BETA axis in the normal development and carcinogenesis of the breast. Crit Rev Oncol Hematol. 2018;131:46–52.

    Article  PubMed  Google Scholar 

  44. Tamura A, Hirai H, Yokota A, Kamio N, Sato A, Shoji T, et al. C/EBPβ is required for survival of Ly6C(-) monocytes. Blood.2017;130:1809–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cheng P, Chen Y, He TL, Wang C, Guo SW, Hu H, et al. Menin coordinates C/EBPβ-mediated TGF-β signaling for epithelial-mesenchymal transition and growth inhibition in pancreatic cancer. Mol Ther Nucleic Acids. 2019;18:155–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature.2010;463:318–25.

    Article  CAS  PubMed  Google Scholar 

  47. Gomis RR, Alarcón C, Nadal C, Van Poznak C, Massagué J. C/EBPbeta at the core of the TGFbeta cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell. 2006;10:203–14.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang YY, Li SF, Qian SW, Zhang YY, Liu Y, Tang QQ, et al. Phosphorylation prevents C/EBPβ from the calpain-dependent degradation. Biochem Biophys Res Commun. 2012;419:550–5.

    Article  CAS  PubMed  Google Scholar 

  49. Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009;9:537–49.

    Article  CAS  PubMed  Google Scholar 

  50. Ma W, Xu Z, Wang Y, Li W, Wei Z, Chen T, et al. A positive feedback loop of SLP2 activates MAPK signaling pathway to promote gastric cancer progression. Theranostics.2018;8:5744–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang S, Wang X, Gao Y, Peng Y, Dong N, Xie Q, et al. RN181 is a tumour suppressor in gastric cancer by regulation of the ERK/MAPK-cyclin D1/CDK4 pathway. J Pathol. 2019;248:204–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen X, Chen X, Zhang X, Wang L, Cao P, Rajamanickam V, et al. Curcuminoid B63 induces ROS-mediated paraptosis-like cell death by targeting TrxR1 in gastric cells. Redox Biol. 2019;21:101061.

    Article  CAS  PubMed  Google Scholar 

  53. Wang X, Liang Q, Zhang L, Gou H, Li Z, Chen H, et al. C8orf76 promotes gastric tumorigenicity and metastasis by directly inducing lncRNA DUSP5P1 and associates with patient outcomes. Clin Cancer Res. 2019;25:3128–40.

    Article  CAS  PubMed  Google Scholar 

  54. Pontes-Quero S, Fernández-Chacón M, Luo W, Lunella FF, Casquero-Garcia V, Garcia-Gonzalez I, et al. High mitogenic stimulation arrests angiogenesis. Nat Commun. 2019;10:2016.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zabielska-Koczywąs K, Wojtkowska A, Dolka I, Małek A, Walewska M, Wojtalewicz A, et al. 3D chick embryo chorioallantoic membrane model as an in vivo model to study morphological and histopathological features of feline fibrosarcomas. BMC Vet Res. 2017;13:201.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Xu YZ, Kanagaratham C, Jancik S, Radzioch D. Promoter deletion analysis using a dual-luciferase reporter system. Methods Mol Biol. 2013;977:79–93.

    Article  CAS  PubMed  Google Scholar 

  57. Shen X, Pasha MA, Hidde K, Khan A, Liang M, Guan W, et al. Group 2 innate lymphoid cells promote airway hyperresponsiveness through production of VEGFA. J Allergy Clin Immunol. 2018;141:1929–31.e4.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Jin L, Chun J, Pan C, Kumar A, Zhang G, Ha Y, et al. The PLAG1-GDH1 axis promotes anoikis resistance and tumor metastasis through CamKK2-AMPK signaling in LKB1-deficient lung cancer. Mol Cell. 2018;69:87–99.e7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are particularly grateful to Dr. Chong Sun (German Cancer Research Center, Heidelberg, Germany) for rigorous guidance.

Author information

Authors and Affiliations

Authors

Contributions

SD, ZY, EX, MZ, WL, JM, XW and HY performed the experiments; XZ, HC and LS analysed data; WG, XX and XL provided the samples; SD and SY wrote the paper; WG and SY commented on the study and revised the paper; SD, WG, XX and XL designed the research.

Corresponding authors

Correspondence to En Xu, Xuefeng Xia or Wenxian Guan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The use of human samples was approved by the Ethics Committee of the Nanjing Drum Tower Hospital of Nanjing University Medical School. Written informed consents were obtained from all patients. The study was performed according to the guideline expressed in the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, S., Yang, Z., Lu, X. et al. Anoikis resistant gastric cancer cells promote angiogenesis and peritoneal metastasis through C/EBPβ-mediated PDGFB autocrine and paracrine signaling. Oncogene 40, 5764–5779 (2021). https://doi.org/10.1038/s41388-021-01988-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01988-y

This article is cited by

Search

Quick links