Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

β-Catenin-CCL2 feedback loop mediates crosstalk between cancer cells and macrophages that regulates breast cancer stem cells

Abstract

Breast cancer is the most frequently diagnosed cancer among women worldwide. Though advances in diagnosis and treatment have prolonged overall survival (OS) for patients with breast cancer, metastasis remains the major obstacles to improved survival for breast cancer patients. The existence of breast cancer stem cells (BCSCs) is a major reason underlying cancer metastasis and recurrence. Therefore, understanding the molecular pathways sustaining BCSC properties and targeting BCSCs will ultimately improve breast cancer treatments. In this study, we found that activation of β-Catenin directly regulated CCL2 expression at the transcriptional level, and in turn promoted macrophages infiltration and M2 polarization. Moreover, macrophages co-cultured with breast cancer cells showed a significant increase in CCL2 expression and promoted β-Catenin-induced BCSCs properties, whereas depletion of CCL2 by adding neutralizing antibodies suppressed BSCSs properties. In addition, we found that β-Catenin-mediated CCL2 secretion recruited macrophages into tumor microenvironment and promoted breast cancer growth and metastasis in vivo. Clinically, we observed a significant positive correlation between β-Catenin, CCL2 and CD163 expression, and increased expression of β-Catenin, CCL2 and CD163 predicted poor prognosis in breast cancer. Furthermore, pharmacological inhibition of CCR2 and β-Catenin synergistically suppressed BCSC properties and breast cancer growth. Collectively, our findings suggested that β-Catenin-mediated CCL2 secretion forms a paracrine feedback loop between breast cancer cells and macrophages, which in turn promotes BCSC properties and supports breast cancer growth and metastasis. Targeting β-Catenin/CCL2 signaling might be an effective strategy for breast cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: β-Catenin regulates CCL2 expression in breast cancer cells.
Fig. 2: β-Catenin/CCL2 axis promotes the recruitment and polarization of macrophages.
Fig. 3: β-Catenin-induced CCL2 forms a paracrine feedback loop between breast cancer cells and tumor-associated macrophages.
Fig. 4: CCL2-mediated crosstalk between breast cancer cells and tumor-associated macrophages is involved in β-Catenin-induced breast cancer stem cell properties.
Fig. 5: β-Catenin/CCL2 feedback loop promotes breast cancer growth and metastasis via recruiting macrophages in vivo.
Fig. 6: β-Catenin is associated with TAMs infiltration and malignant progression in breast cancer patients.
Fig. 7: Combined inhibition of CCR2 and β-Catenin synergistically suppresses breast cancer growth.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.

    Article  PubMed  Google Scholar 

  2. Ellsworth RE, Blackburn HL, Shriver CD, Soon-Shiong P, Ellsworth DL. Molecular heterogeneity in breast cancer: state of the science and implications for patient care. Semin Cell Dev Biol. 2017;64:65–72.

    Article  CAS  PubMed  Google Scholar 

  3. Webster S, Lawn S, Chan R, Koczwara B. The role of comorbidity assessment in guiding treatment decision-making for women with early breast cancer: a systematic literature review. Support Care Cancer. 2020;28:1041–50.

    Article  PubMed  Google Scholar 

  4. Waks AG, Winer EP. Breast cancer treatment: a review. JAMA 2019;321:288–300.

    Article  CAS  PubMed  Google Scholar 

  5. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23:1124–34.

    Article  CAS  PubMed  Google Scholar 

  6. Bai X, Ni J, Beretov J, Graham P, Li Y. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev. 2018;69:152–63.

    Article  CAS  PubMed  Google Scholar 

  7. Lawson DA, Bhakta NR, Kessenbrock K, Prummel KD, Yu Y, Takai K, et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature. 2015;526:131–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100:3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koelwyn GJ, Quail DF, Zhang X, White RM, Jones LW. Exercise-dependent regulation of the tumour microenvironment. Nat Rev Cancer. 2017;17:620–32.

    Article  PubMed  CAS  Google Scholar 

  11. Dehne N, Mora J, Namgaladze D, Weigert A, Brune B. Cancer cell and macrophage cross-talk in the tumor microenvironment. Curr Opin Pharm. 2017;35:12–9.

    Article  CAS  Google Scholar 

  12. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11:889–96.

    Article  CAS  PubMed  Google Scholar 

  13. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–55.

    Article  CAS  PubMed  Google Scholar 

  14. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41:49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brown JM, Recht L, Strober S. The Promise of Targeting Macrophages in Cancer Therapy. Clin Cancer Res. 2017;23:3241–50.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hsu DS, Wang HJ, Tai SK, Chou CH, Hsieh CH, Chiu PH, et al. Acetylation of snail modulates the cytokinome of cancer cells to enhance the recruitment of macrophages. Cancer Cell. 2014;26:534–48.

    Article  CAS  PubMed  Google Scholar 

  18. Chen C, He W, Huang J, Wang B, Li H, Cai Q, et al. LNMAT1 promotes lymphatic metastasis of bladder cancer via CCL2 dependent macrophage recruitment. Nat Commun. 2018;9:3826.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Raggi C, Mousa HS, Correnti M, Sica A, Invernizzi P. Cancer stem cells and tumor-associated macrophages: a roadmap for multitargeting strategies. Oncogene. 2016;35:671–82.

    Article  CAS  PubMed  Google Scholar 

  20. Chen J, Yao Y, Gong C, Yu F, Su S, Liu B, et al. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell. 2011;19:541–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Su SC, Liu Q, Chen JQ, Chen JN, Chen F, He CH, et al. A Positive Feedback Loop between Mesenchymal-like Cancer Cells and Macrophages Is Essential to Breast Cancer Metastasis. Cancer Cell. 2014;25:605–20.

    Article  PubMed  CAS  Google Scholar 

  22. Obeid E, Nanda R, Fu YX, Olopade OI. The role of tumor-associated macrophages in breast cancer progression (review). Int J Oncol. 2013;43:5–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jamiyan T, Kuroda H, Yamaguchi R, Abe A, Hayashi M. CD68- and CD163-positive tumor-associated macrophages in triple negative cancer of the breast. Virchows Arch. 2020;477:767–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nusse R, Clevers H. Wnt/beta-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell. 2017;169:985–99.

    Article  CAS  PubMed  Google Scholar 

  25. Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013;13:11–26.

    Article  CAS  PubMed  Google Scholar 

  26. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene 2017;36:1461–73.

    Article  CAS  PubMed  Google Scholar 

  27. Khramtsov AI, Khramtsova GF, Tretiakova M, Huo DZ, Olopade OI, Goss KH. Wnt/beta-Catenin Pathway Activation Is Enriched in Basal-Like Breast Cancers and Predicts Poor Outcome. Am J Pathol. 2010;176:2911–20.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Watson AL, Rahrmann EP, Moriarity BS, Choi K, Conboy CB, Greeley AD, et al. Canonical Wnt/beta-catenin signaling drives human schwann cell transformation, progression, and tumor maintenance. Cancer Disco. 2013;3:674–89.

    Article  CAS  Google Scholar 

  29. Lin SY, Xia W, Wang JC, Kwong KY, Spohn B, Wen Y, et al. Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci USA. 2000;97:4262–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sanchez-Tillo E, de Barrios O, Siles L, Cuatrecasas M, Castells A, Postigo A. beta-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc Natl Acad Sci USA. 2011;108:19204–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P, et al. Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res. 2003;63:2658–64.

    CAS  PubMed  Google Scholar 

  32. Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ, et al. beta-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell. 2012;151:1457–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sarode P, Zheng X, Giotopoulou GA, Weigert A, Kuenne C, Gunther S, et al. Reprogramming of tumor-associated macrophages by targeting beta-catenin/FOSL2/ARID5A signaling: a potential treatment of lung cancer. Sci Adv. 2020;6:eaaz6105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang Y, Ye YC, Chen Y, Zhao JL, Gao CC, Han H, et al. Crosstalk between hepatic tumor cells and macrophages via Wnt/beta-catenin signaling promotes M2-like macrophage polarization and reinforces tumor malignant behaviors. Cell Death Dis. 2018;9:793.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ye YC, Zhao JL, Lu YT, Gao CC, Yang Y, Liang SQ, et al. NOTCH Signaling via WNT Regulates the Proliferation of Alternative, CCR2-Independent Tumor-Associated Macrophages in Hepatocellular Carcinoma. Cancer Res. 2019;79:4160–72.

    Article  CAS  PubMed  Google Scholar 

  36. Hamburg‐Shields E, DiNuoscio GJ, Mullin NK, Lafyatis R, Atit RP. Sustained β‐catenin activity in dermal fibroblasts promotes fibrosis by up‐regulating expression of extracellular matrix protein‐coding genes. J Pathol. 2015;235:686–97.

    Article  PubMed  CAS  Google Scholar 

  37. Liu M, Sun X, Shi S. MORC2 Enhances Tumor Growth by Promoting Angiogenesis and Tumor-Associated Macrophage Recruitment via Wnt/beta-Catenin in Lung Cancer. Cell Physiol Biochem. 2018;51:1679–94.

    Article  CAS  PubMed  Google Scholar 

  38. Mestdagt M, Polette M, Buttice G, Noel A, Ueda A, Foidart JM, et al. Transactivation of MCP-1/CCL2 by beta-catenin/TCF-4 in human breast cancer cells. Int J Cancer. 2006;118:35–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science. 1997;275:1784–7.

    Article  CAS  PubMed  Google Scholar 

  40. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475:222–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Roca H, Varsos ZS, Sud S, Craig MJ, Ying C, Pienta KJ. CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem. 2009;284:34342–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Murray PJ. Macrophage Polarization. Annu Rev Physiol. 2017;79:541–66.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang F, Liu H, Jiang G, Wang H, Wang X, Fang R, et al. Changes in the proteomic profile during the differential polarization status of the human monocyte-derived macrophage THP-1 cell line. Proteomics. 2015;15:773–86.

    Article  CAS  PubMed  Google Scholar 

  44. Fodde R, Brabletz T. Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol. 2007;19:150–8.

    Article  CAS  PubMed  Google Scholar 

  45. Takahashi-Yanaga F, Kahn M. Targeting Wnt Signaling: can We Safely Eradicate Cancer Stem Cells? Clin Cancer Res. 2010;16:3153–62.

    Article  CAS  PubMed  Google Scholar 

  46. Jang GB, Hong IS, Kim RJ, Lee SY, Park SJ, Lee ES, et al. Wnt/beta-Catenin Small-Molecule Inhibitor CWP232228 Preferentially Inhibits the Growth of Breast Cancer Stem-like Cells. Cancer Res. 2015;75:1691–702.

    Article  CAS  PubMed  Google Scholar 

  47. Tsuyada A, Chow A, Wu J, Somlo G, Chu PG, Loera S, et al. CCL2 Mediates Cross-talk between Cancer Cells and Stromal Fibroblasts That Regulates Breast Cancer Stem Cells. Cancer Res. 2012;72:2768–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Geyer FC, Lacroix-Triki M, Savage K, Arnedos M, Lambros MB, MacKay A, et al. beta-Catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation. Mod Pathol. 2011;24:209–31.

    Article  CAS  PubMed  Google Scholar 

  49. Schade B, Lesurf R, Sanguin-Gendreau V, Bui T, Deblois G, O’Toole SA, et al. beta-Catenin Signaling Is a Critical Event in ErbB2-Mediated Mammary Tumor Progression. Cancer Res. 2013;73:4474–87.

    Article  CAS  PubMed  Google Scholar 

  50. Amini-Nik S, Cambridge E, Yu W, Guo A, Whetstone H, Nadesan P, et al. beta-Catenin-regulated myeloid cell adhesion and migration determine wound healing. J Clin Investig. 2014;124:2599–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhao SJ, Jiang YQ, Xu NW, Li Q, Zhang Q, Wang SY, et al. SPARCL1 suppresses osteosarcoma metastasis and recruits macrophages by activation of canonical WNT/beta-catenin signaling through stabilization of the WNT-receptor complex. Oncogene. 2018;37:1049–61.

    Article  CAS  PubMed  Google Scholar 

  52. Daly C, Rollins BJ. Monocyte chemoattractant protein-1 (CCL2) in inflammatory disease and adaptive immunity: therapeutic opportunities and controversies. Microcirculation. 2003;10:247–57.

    Article  CAS  PubMed  Google Scholar 

  53. Yao M, Yu E, Staggs V, Fan F, Cheng N. Elevated expression of chemokine C-C ligand 2 in stroma is associated with recurrent basal-like breast cancers. Mod Pathol. 2016;29:810–23.

    Article  CAS  PubMed  Google Scholar 

  54. Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, et al. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res. 2000;6:3282–9.

    CAS  PubMed  Google Scholar 

  55. Soria G, Ben-Baruch A. The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett. 2008;267:271–85.

    Article  CAS  PubMed  Google Scholar 

  56. Chen M, Forrester JV, Xu H. Dysregulation in retinal para-inflammation and age-related retinal degeneration in CCL2 or CCR2 deficient mice. PLoS ONE. 2011;6:e22818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van Zoelen MA, Verstege MI, Draing C, de Beer R, van’t Veer C, Florquin S, et al. Endogenous MCP-1 promotes lung inflammation induced by LPS and LTA. Mol Immunol. 2011;48:1468–76.

    Article  PubMed  CAS  Google Scholar 

  58. Yoshimura T. The chemokine MCP-1 (CCL2) in the host interaction with cancer: a foe or ally? Cell Mol Immunol. 2018;15:335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ou B, Cheng X, Xu Z, Chen C, Shen X, Zhao J, et al. A positive feedback loop of beta-catenin/CCR2 axis promotes regorafenib resistance in colorectal cancer. Cell Death Dis. 2019;10:643.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Williams CB, Yeh ES, Soloff AC. Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. NPJ Breast Cancer. 2016;2:15025.

  61. Yang J, Liao DB, Chen C, Liu Y, Chuang TH, Xiang R, et al. Tumor-Associated Macrophages Regulate Murine Breast Cancer Stem Cells Through a Novel Paracrine EGFR/Stat3/Sox-2 Signaling Pathway. Stem Cells. 2013;31:248–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81702819, 81772825, 81972194), grants from Guangdong Natural Science Funds (2017A030313500, 2019A1515010113).

Author information

Authors and Affiliations

Authors

Contributions

HL, YY, DC contributed to the study design. FZ, PL and SL performed experiments. MY, SZ and JD analyzed the data. HL, ZF, YY and DC wrote the paper.

Corresponding authors

Correspondence to Danyang Chen, Yanmei Yi or Hao Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Li, P., Liu, S. et al. β-Catenin-CCL2 feedback loop mediates crosstalk between cancer cells and macrophages that regulates breast cancer stem cells. Oncogene 40, 5854–5865 (2021). https://doi.org/10.1038/s41388-021-01986-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01986-0

This article is cited by

Search

Quick links