Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

N6-methyladenosine demethylase ALKBH5 suppresses malignancy of esophageal cancer by regulating microRNA biogenesis and RAI1 expression

Abstract

N6-Methyladenosine (m6A) is the most prevalent epigenetic RNA modification and is vital in regulating malignancies. The roles of m6A modifiers on noncoding RNAs have not been fully investigated in esophageal cancer. By screening all m6A modifiers, ALKBH5 was the most potent member related to patient outcomes and suppressing esophageal cancer malignancy in cell and animal models. It demethylated pri-miR-194-2 and inhibited miR-194-2 biogenesis through an m6A/DGCR8-dependent manner. RAI1, previously considered as a circadian clock transcriptional regulator, was the main target of miR-194-2. It enhanced transcription of Hippo pathway upstream genes by binding to their 3′UTR and suppressed YAP/TAZ nuclear translocation. The ALKBH5/miR-194-2/RAI1 axis was also validated in clinical samples. In addition, the increased malignancy by low ALKBH5 was abolished by the YAP inhibitor verteporfin. Our findings uncover a critical role of ALKBH5 in miRNAs biogenesis and provide novel insight for developing treatment strategies in esophageal cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ALKBH5 correlates with a good prognosis in esophageal cancer patients.
Fig. 2: ALKBH5 impedes cell growth and motility of esophageal cancer in vitro and in vivo.
Fig. 3: ALKBH5 suppresses the biogenesis of miR-194-2 and miR-532 clusters.
Fig. 4: ALKBH5-mediated tumor suppression and miRNA biogenesis rely on m6A modification.
Fig. 5: miR-194-2 is onco-promoting in esophageal cancer and counteracts ALKBH5 function.
Fig. 6: RAI1 is a target gene of ALKBH5/miR-194-2.
Fig. 7: RAI1 correlates with outcomes of esophageal cancer patients and hinders tumor progression in vitro.
Fig. 8: ALKBH5/RAI1 regulates the Hippo pathway and sensitivity to verteporfin.

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Cin. 2018;68:394–424.

    Article  Google Scholar 

  2. Rustgi AK, El-Serag HB. Esophageal carcinoma. N Engl J Med. 2014;371:2499–509.

    Article  PubMed  CAS  Google Scholar 

  3. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 2015;160:48–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Su XD, Zhang DK, Zhang X, Lin P, Long H, Rong TH. Prognostic factors in patients with recurrence after complete resection of esophageal squamous cell carcinoma. J Thorac Dis. 2014;6:949–57.

    PubMed  PubMed Central  Google Scholar 

  5. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–6.

    Article  CAS  PubMed  Google Scholar 

  6. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell. 2012;149:1635–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lan Q, Liu PY, Haase J, Bell JL, Huttelmaier S, Liu T. The critical role of RNA m(6)A methylation in cancer. Cancer Res. 2019;79:1285–92.

    Article  CAS  PubMed  Google Scholar 

  8. Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10:93–5.

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117–20.

    Article  CAS  PubMed  Google Scholar 

  10. Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat Rev Genet. 2014;15:293–306.

    Article  CAS  PubMed  Google Scholar 

  11. Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, et al. 5’ UTR m(6)A promotes cap-independent translation. Cell. 2015;163:999–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Batista PJ, Molinie B, Wang J, Qu K, Zhang J, Li L, et al. m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell. 2014;15:707–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fustin JM, Doi M, Yamaguchi Y, Hida H, Nishimura S, Yoshida M, et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell. 2013;155:793–806.

    Article  CAS  PubMed  Google Scholar 

  14. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7:885–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jaffrey SR, Kharas MG. Emerging links between m(6)A and misregulated mRNA methylation in cancer. Genome Med. 2017;9:2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Chen XY, Zhang J, Zhu JS. The role of m(6)A RNA methylation in human cancer. Mol cancer. 2019;18:103.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang C, Zhang W, Zhang L, Chen X, Liu F, Zhang J, et al. miR-146a-5p mediates epithelial-mesenchymal transition of oesophageal squamous cell carcinoma via targeting Notch2. Br J Cancer. 2016;115:1548–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krzeszinski JY, Wei W, Huynh H, Jin Z, Wang X, Chang TC, et al. miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2. Nature. 2014;512:431–5.

    Article  CAS  PubMed  Google Scholar 

  20. Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006;125:887–901.

    Article  CAS  PubMed  Google Scholar 

  21. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, et al. The microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432:235–40.

    Article  CAS  PubMed  Google Scholar 

  22. Alarcon CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF. N6-methyladenosine marks primary microRNAs for processing. Nature. 2015;519:482–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peng W, Li J. Chen R, Gu Q, Yang P, Qian W, et al. Upregulated METTL3 promotes metastasis of colorectal Cancer via miR-1246/SPRED2/MAPK signaling pathway. J Exp Clin Cancer Res. 2019;38:393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Han B, Chu C, Su X, Zhang N, Zhou L, Zhang M, et al. N(6)-methyladenosine-dependent primary microRNA-126 processing activated PI3K-AKT-mTOR pathway drove the development of pulmonary fibrosis induced by nanoscale carbon black particles in rats. Nanotoxicology. 2020;14:1–20.

    Article  CAS  PubMed  Google Scholar 

  25. Hou H, Zhao H, Yu X, Cong P, Zhou Y, Jiang Y, et al. METTL3 promotes the proliferation and invasion of esophageal cancer cells partly through AKT signaling pathway. Pathol Res Pract. 2020;216:153087.

    Article  CAS  PubMed  Google Scholar 

  26. Xia TL, Yan SM, Yuan L, Zeng MS. Upregulation of METTL3 expression predicts poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Manag Res. 2020;12:5729–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, et al. m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 2017;31:591–606 e596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shen C, Sheng Y, Zhu AC, Robinson S, Jiang X, Dong L, et al. RNA demethylase ALKBH5 selectively promotes tumorigenesis and cancer stem cell self-renewal in acute myeloid leukemia. Cell Stem Cell. 2020;27:64–80 e69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen Y, Zhao Y, Chen J, Peng C, Zhang Y, Tong R, et al. ALKBH5 suppresses malignancy of hepatocellular carcinoma via m(6)A-guided epigenetic inhibition of LYPD1. Mol Cancer. 2020;19:123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tang B, Yang Y, Kang M, Wang Y, Wang Y, Bi Y, et al. m(6)A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling. Mol Cancer. 2020;19:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li P, Yang Y, Liu H, Yang AK, Di JM, Tan GM, et al. MiR-194 functions as a tumor suppressor in laryngeal squamous cell carcinoma by targeting Wee1. J Hematol Oncol. 2017;10:32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wu X, Liu T, Fang O, Leach LJ, Hu X, Luo Z. miR-194 suppresses metastasis of non-small cell lung cancer through regulating expression of BMP1 and p27(kip1). Oncogene. 2014;33:1506–14.

    Article  CAS  PubMed  Google Scholar 

  33. Das R, Gregory PA, Fernandes RC, Denis I, Wang Q, Townley SL, et al. MicroRNA-194 promotes prostate cancer metastasis by inhibiting SOCS2. Cancer Res. 2017;77:1021–34.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang J, Zhao CY, Zhang SH, Yu DH, Chen Y, Liu QH, et al. Upregulation of miR-194 contributes to tumor growth and progression in pancreatic ductal adenocarcinoma. Oncol Rep. 2014;31:1157–64.

    Article  CAS  PubMed  Google Scholar 

  35. Yi YC, Chen XY, Zhang J, Zhu JS. Novel insights into the interplay between m(6)A modification and noncoding RNAs in cancer. Mol Cancer. 2020;19:121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH, Wang F, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6) -methyladenosine-dependent primary MicroRNA processing. Hepatology. 2017;65:529–43.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang J, Bai R, Li M, Ye H, Wu C, Wang C, et al. Excessive miR-25-3p maturation via N(6)-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat Commun. 2019;10:1858.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Han J, Wang JZ, Yang X, Yu H, Zhou R, Lu HC, et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer. 2019;18:110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Barfield R, Wang H, Liu Y, Brody JA, Swenson B, Li R, et al. Epigenome-wide association analysis of daytime sleepiness in the Multi-Ethnic Study of atherosclerosis reveals African-American-specific associations. Sleep. 2019;42:zsz101.

  40. Chen H, Cade BE, Gleason KJ, Bjonnes AC, Stilp AM, Sofer T, et al. Multiethnic meta-analysis identifies RAI1 as a possible obstructive sleep apnea-related quantitative trait locus in men. Am J Respir Cell Mol Biol. 2018;58:391–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boone PM, Reiter RJ, Glaze DG, Tan DX, Lupski JR, Potocki L. Abnormal circadian rhythm of melatonin in Smith-Magenis syndrome patients with RAI1 point mutations. Am J Med Genet Part A. 2011;155A:2024–7.

    Article  PubMed  Google Scholar 

  42. Moroishi T, Hansen CG, Guan KL. The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer. 2015;15:73–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang W, Nandakumar N, Shi Y, Manzano M, Smith A, Graham G, et al. Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Sci Signal. 2014;7:ra42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Liu JY, Li YH, Lin HX, Liao YJ, Mai SJ, Liu ZW, et al. Overexpression of YAP 1 contributes to progressive features and poor prognosis of human urothelial carcinoma of the bladder. BMC Cancer. 2013;13:349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thongon N, Castiglioni I, Zucal C, Latorre E, D’Agostino V, Bauer I, et al. The GSK3beta inhibitor BIS I reverts YAP-dependent EMT signature in PDAC cell lines by decreasing SMADs expression level. Oncotarget. 2016;7:26551–66.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cui M, Li Z. Downregulation of YAP inhibits proliferation and induces apoptosis in Eca-109 cells. Exp Ther. Med. 2018;15:1048–52.

    CAS  PubMed  Google Scholar 

  47. Qu Y, Zhang L, Wang J, Chen P, Jia Y, Wang C, et al. Yes-associated protein (YAP) predicts poor prognosis and regulates progression of esophageal squamous cell cancer through epithelial-mesenchymal transition. Exp Ther. Med. 2019;18:2993–3001.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Song S, Ajani JA, Honjo S, Maru DM, Chen Q, Scott AW, et al. Hippo coactivator YAP1 upregulates SOX9 and endows esophageal cancer cells with stem-like properties. Cancer Res. 2014;74:4170–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wei H, Wang F, Wang Y, Li T, Xiu P, Zhong J, et al. Verteporfin suppresses cell survival, angiogenesis and vasculogenic mimicry of pancreatic ductal adenocarcinoma via disrupting the YAP-TEAD complex. Cancer Sci. 2017;108:478–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Alexandra Marshall from Marshall Medical Communications provided editorial assistance during manuscript preparation. This study was supported by the National Natural Science Foundation of China (81773228 and 81972850 to Y.C.; 81601999 to L.Z.); Postdoctoral Science Foundation of China (2018M640637 to L.Z.), and Special Fund for Taishan Scholar Project (ts20190973 to Y.C.).

Author information

Authors and Affiliations

Authors

Contributions

Y.C. and L.Z. conceived and designed the study. P.C. performed most of the in vitro and in vivo experiments. S.L. performed the in silico studies and helped with the in vivo studies. R.Z., J.C., W.Z., and Y.L. helped with the clinical studies. Y.C., L.Z., P.C., and S.L. analyzed data and drafted the manuscript. P.C., S.L., K.Z., R.Z., and Y.L. supplemented the experiments according to the reviewers’ comments. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lin Zhang or Yufeng Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Li, S., Zhang, K. et al. N6-methyladenosine demethylase ALKBH5 suppresses malignancy of esophageal cancer by regulating microRNA biogenesis and RAI1 expression. Oncogene 40, 5600–5612 (2021). https://doi.org/10.1038/s41388-021-01966-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01966-4

This article is cited by

Search

Quick links