Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

NEU4 inhibits motility of HCC cells by cleaving sialic acids on CD44

Abstract

Hepatocellular carcinoma (HCC) is an extremely metastatic tumor. Sialic acids (SAs) are associated with cancer development and metastasis. NEU4 is a sialidase that removes SAs from glycoconjugates, while the function of the NEU4 in HCC has not been clearly explored. In our research, we found the NEU4 expression was significantly down-regulated in HCC tissues, which was correlated with high grades and poor outcomes of HCC. The NEU4 expression could be regulated by histone acetylation. In the functional analysis of NEU4, the cell motility was inhibited when NEU4 was overexpressed, and restored when NEU4 expression was down-regulated. Similarly, NEU4 over-expressed HCC cells showed less metastasis in athymic nude mice. Further study revealed that NEU4 could inhibit cell migration by enzymatic decomposition of SAs. Our results verified a NEU4 active site (NEU4E235) and overexpressing inactivates NEU4E235A that weakens the inhibition ability to cell migration. Further, 70 kinds of specific interacting proteins of NEU4 including CD44 were identified through mass spectrum. Moreover, the α2,3-linked SAs on CD44 were decreased and the hyaluronic acid (HA) binding ability was increased when NEU4 over-expressed or activated. Additionally, the mutation of CD44 with six N-glycosylation sites showed less sensibility to NEU4 on cell migration compared with wild-type CD44. In summary, our results revealed the mechanism of low expression of NEU4 in HCC and its inhibitory effect on cell migration by removal of SAs on CD44, which may provide new treatment strategies to control the motility and metastasis of HCC.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: NEU4 is significantly downregulated in HCC.
Fig. 2: NEU4 expression could be inhibited by HDAC1/2-mediated histone deacetylation in HCC cells.
Fig. 3: Exogenous expression of NEU4 could inhibit the motility of HCC cells.
Fig. 4: NEU4 inhibits experimental pulmonary metastasis in nude mice.
Fig. 5: NEU4 suppresses the motility of HCC cells, depending on its enzyme activity.
Fig. 6: NEU4 inhibits the motility of cells by regulating SAs in cell membranes.
Fig. 7: NEU4 inhibits the cell motility by cleaving the SAs of CD44.
Fig. 8: Schematic diagram of NEU4 regulation and function in HCC.

References

  1. 1.

    Villanueva A. Hepatocellular Carcinoma. N. Engl J Med. 2019;380:1450–62.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Wu L, Li H, Chen S, Wu X, Chen X, Wang F. Catalpol inhibits the proliferation, migration and metastasis of HCC cells by regulating miR‑140–5p expression. Mol Med Rep. 2021; 23:29.

  3. 3.

    Varki A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature. 2007;446:1023–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Painbeni T, Gamelin E, Cailleux A, Le Bouil A, Boisdron-Celle M, Daver A, et al. Plasma sialic acid as a marker of the effect of the treatment on metastatic colorectal cancer. Eur J Cancer. 1997;33:2216–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Laganà A, Pardo-Martínez B, Marino A, Fago G, Bizzarri M. Determination of serum total lipid and free N-acetylneuraminic acid in genitourinary malignancies by fluorimetric high performance liquid chromatography. Relevance of free N-acetylneuraminic acid as tumour marker. Clin Chim Acta. 1995;243:165–79.

    PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Lv J, Lv CQ, Xu L, Yang H. Plasma content variation and correlation of plasmalogen and GIS, TC, and TPL in gastric carcinoma patients: a comparative study. Med Sci Monit Basic Res. 2015;21:157–60.

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Lv J, Lv CQ, Mei P, Qi SM. Diagnosis value of membrane glycolipids biochemistry index in intracranial and gastrointestinal tumors. Asian Pac J Cancer Prev. 2015;16:2693–6.

    PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Kongtawelert P, Tangkijvanich P, Ong-Chai S, Poovorawan Y. Role of serum total sialic acid in differentiating cholangiocarcinoma from hepatocellular carcinoma. World J Gastroenterol. 2003;9:2178–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Sun H, Zhou Y, Jiang H, Xu Y. Elucidation of functional roles of sialic acids in cancer migration. Front Oncol. 2020;10:401.

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Bassagañas S, Pérez-Garay M, Peracaula R. Cell surface sialic acid modulates extracellular matrix adhesion and migration in pancreatic adenocarcinoma cells. Pancreas. 2014;43:109–17.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  11. 11.

    Angata K, Fukuda M. Roles of polysialic acid in migration and differentiation of neural stem cells. Methods Enzymol. 2010;479:25–36.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Lee M, Lee HJ, Seo WD, Park KH, Lee YS. Sialylation of integrin beta1 is involved in radiation-induced adhesion and migration in human colon cancer cells. Int J Radiat Oncol Biol Phys. 2010;76:1528–36.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Ou L, He X, Liu N, Song Y, Li J, Gao L, et al. Sialylation of FGFR1 by ST6Gal‑I overexpression contributes to ovarian cancer cell migration and chemoresistance. Mol Med Rep. 2020;21:1449–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Gong A, Zhao X, Pan Y, Qi Y, Li S, Huang Y, et al. The lncRNA MEG3 mediates renal cell cancer progression by regulating ST3Gal1 transcription and EGFR sialylation. J Cell Sci. 2020; 133: jcs244020.

  15. 15.

    Birch M, Mitchell S, Hart IR. Isolation and characterization of human melanoma cell variants expressing high and low levels of CD44. Cancer Res. 1991;51:6660–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Shiozaki K, Takahashi K, Hosono M, Yamaguchi K, Hata K, Shiozaki M, et al. Phosphatidic acid-mediated activation and translocation to the cell surface of sialidase NEU3, promoting signaling for cell migration. FASEB J. 2015;29:2099–111.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Miyagi T, Yamaguchi K. Mammalian sialidases: physiological and pathological roles in cellular functions. Glycobiology. 2012;22:880–96.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Miyagi T, Wada T, Yamaguchi K, Hata K. Sialidase and malignancy: a minireview. Glycoconj J. 2004;20:189–98.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Miyagi T, Wada T, Yamaguchi K, Shiozaki K, Sato I, Kakugawa Y, et al. Human sialidase as a cancer marker. Proteomics. 2008;8:3303–11.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Comelli EM, Amado M, Lustig SR, Paulson JC. Identification and expression of Neu4, a novel murine sialidase. Gene. 2003;321:155–61.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Seyrantepe V, Landry K, Trudel S, Hassan JA, Morales CR, Pshezhetsky AV. Neu4, a novel human lysosomal lumen sialidase, confers normal phenotype to sialidosis and galactosialidosis cells. J Biol Chem. 2004;279:37021–9.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Takahashi K, Mitoma J, Hosono M, Shiozaki K, Sato C, Yamaguchi K, et al. Sialidase NEU4 hydrolyzes polysialic acids of neural cell adhesion molecules and negatively regulates neurite formation by hippocampal neurons. J Biol Chem. 2012;287:14816–26.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Sorice M, Matarrese P, Tinari A, Giammarioli AM, Garofalo T, Manganelli V, et al. Raft component GD3 associates with tubulin following CD95/Fas ligation. FASEB J. 2009;23:3298–308.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Sano R, Annunziata I, Patterson A, Moshiach S, Gomero E, Opferman J, et al. GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca(2+)-dependent mitochondrial apoptosis. Mol Cell. 2009;36:500–11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Shiozaki K, Yamaguchi K, Takahashi K, Moriya S, Miyagi T. Regulation of sialyl Lewis antigen expression in colon cancer cells by sialidase NEU4. J Biol Chem. 2011;286:21052–61.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Yamaguchi K, Hata K, Koseki K, Shiozaki K, Akita H, Wada T, et al. Evidence for mitochondrial localization of a novel human sialidase (NEU4). Biochemical J. 2005;390:85–93.

    CAS  Article  Google Scholar 

  27. 27.

    Grinchuk OV, Yenamandra SP, Iyer R, Singh M, Lee HK, Lim KH, et al. Tumor-adjacent tissue co-expression profile analysis reveals pro-oncogenic ribosomal gene signature for prognosis of resectable hepatocellular carcinoma. Mol Oncol. 2018;12:89–113.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–w303.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Uemura T, Shiozaki K, Yamaguchi K, Miyazaki S, Satomi S, Kato K, et al. Contribution of sialidase NEU1 to suppression of metastasis of human colon cancer cells through desialylation of integrin beta4. Oncogene. 2009;28:1218–29.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Hou G, Liu G, Yang Y, Li Y, Yuan S, Zhao L, et al. Neuraminidase 1 (NEU1) promotes proliferation and migration as a diagnostic and prognostic biomarker of hepatocellular carcinoma. Oncotarget. 2016;7:64957–66.

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Nath S, Mandal C, Chatterjee U, Mandal C. Association of cytosolic sialidase Neu2 with plasma membrane enhances Fas-mediated apoptosis by impairing PI3K-Akt/mTOR-mediated pathway in pancreatic cancer cells. Cell Death Dis. 2018;9:210.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. 32.

    Ueno S, Saito S, Wada T, Yamaguchi K, Satoh M, Arai Y, et al. Plasma membrane-associated sialidase is up-regulated in renal cell carcinoma and promotes interleukin-6-induced apoptosis suppression and cell motility. J Biol Chem. 2006;281:7756–64.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Yamaguchi K, Hata K, Wada T, Moriya S, Miyagi T. Epidermal growth factor-induced mobilization of a ganglioside-specific sialidase (NEU3) to membrane ruffles. Biochem Biophys Res Commun. 2006;346:484–90.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Yamanami H, Shiozaki K, Wada T, Yamaguchi K, Uemura T, Kakugawa Y, et al. Down-regulation of sialidase NEU4 may contribute to invasive properties of human colon cancers. Cancer Sci. 2007;98:299–307.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Monti E, Bassi MT, Bresciani R, Civini S, Croci GL, Papini N, et al. Molecular cloning and characterization of NEU4, the fourth member of the human sialidase gene family. Genomics. 2004;83:445–53.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Harr JC, Gonzalez-Sandoval A, Gasser SM. Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man. EMBO Rep. 2016;17:139–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Sun TY, Xie HJ, Li Z, Kong LF, Gou XN, Li DJ, et al. miR-34a regulates HDAC1 expression to affect the proliferation and apoptosis of hepatocellular carcinoma. Am J Transl Res. 2017;9:103–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Quint K, Agaimy A, Di Fazio P, Montalbano R, Steindorf C, Jung R, et al. Clinical significance of histone deacetylases 1, 2, 3, and 7: HDAC2 is an independent predictor of survival in HCC. Virchows Arch. 2011;459:129–39.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Chavas LM, Tringali C, Fusi P, Venerando B, Tettamanti G, Kato R, et al. Crystal structure of the human cytosolic sialidase Neu2. Evidence for the dynamic nature of substrate recognition. J Biol Chem. 2005;280:469–75.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Mozzi A, Mazzacuva P, Zampella G, Forcella ME, Fusi PA, Monti E. Molecular insight into substrate recognition by human cytosolic sialidase NEU2. Proteins. 2012;80:1123–32.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Finlay TM, Jayanth P, Amith SR, Gilmour A, Guzzo C, Gee K, et al. Thymoquinone from nutraceutical black cumin oil activates Neu4 sialidase in live macrophage, dendritic, and normal and type I sialidosis human fibroblast cells via GPCR Galphai proteins and matrix metalloproteinase-9. Glycoconj J. 2010;27:329–48.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Zong J, Peng Q, Wang Q, Zhang T, Fan D, Xu X. Human HSP70 and modified HPV16 E7 fusion DNA vaccine induces enhanced specific CD8+ T cell responses and anti-tumor effects. Oncol Rep. 2009;22:953–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Zong J, Wang C, Wang Q, Peng Q, Xu Y, Xie X, et al. HSP70 and modified HPV 16 E7 fusion gene without the addition of a signal peptide gene sequence as a candidate therapeutic tumor vaccine. Oncol Rep. 2013;30:3020–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Naor D, Sionov RV, Ish-Shalom D. CD44: structure, function, and association with the malignant process. Adv Cancer Res. 1997;71:241–319.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Borland G, Ross JA, Guy K. Forms and functions of CD44. Immunology. 1998;93:139–48.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Katoh S, Zheng Z, Oritani K, Shimozato T, Kincade PW. Glycosylation of CD44 negatively regulates its recognition of hyaluronan. J Exp Med. 1995;182:419–29.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Katoh S, Miyagi T, Taniguchi H, Matsubara Y, Kadota J, Tominaga A, et al. Cutting edge: an inducible sialidase regulates the hyaluronic acid binding ability of CD44-bearing human monocytes. J Immunol. 1999;162:5058–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Lesley J, English N, Perschl A, Gregoroff J, Hyman R. Variant cell lines selected for alterations in the function of the hyaluronan receptor CD44 show differences in glycosylation. J Exp Med. 1995;182:431–7.

    PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Rochman M, Moll J, Herrlich P, Wallach SB, Nedvetzki S, Sionov RV, et al. The CD44 receptor of lymphoma cells: structure-function relationships and mechanism of activation. Cell Adhes Commun. 2000;7:331–47.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Guvench O. Revealing the mechanisms of protein disorder and N-glycosylation in CD44-hyaluronan binding using molecular simulation. Front Immunol. 2015;6:305.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. 51.

    Skelton TP, Zeng C, Nocks A, Stamenkovic I. Glycosylation provides both stimulatory and inhibitory effects on cell surface and soluble CD44 binding to hyaluronan. J Cell Biol. 1998;140:431–46.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Li H, Wang X, Zhang C, Cheng Y, Yu M, Zhao K, et al. HDAC1-induced epigenetic silencing of ASPP2 promotes cell motility, tumour growth and drug resistance in renal cell carcinoma. Cancer Lett. 2018;432:121–31.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Liu W, Han F, Qu S, Yao Y, Zhao J, Akhtar ML, et al. MARVELD1 depletion leads to dysfunction of motor and cognition via regulating glia-dependent neuronal migration during brain development. Cell Death Dis. 2018;9:999.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31771627).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Huan Nie or Yu Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Dou, P., Akhtar, M.L. et al. NEU4 inhibits motility of HCC cells by cleaving sialic acids on CD44. Oncogene 40, 5427–5440 (2021). https://doi.org/10.1038/s41388-021-01955-7

Download citation

Search

Quick links