Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Irreversible JNK blockade overcomes PD-L1-mediated resistance to chemotherapy in colorectal cancer

Abstract

Colorectal cancer (CRC) cells have low or absent tumor cell PD-L1 expression that we previously demonstrated can confer chemotherapy resistance. Here, we demonstrate that PD-L1 depletion enhances JNK activity resulting in increased BimThr116 phosphorylation and its sequestration by MCL-1 and BCL-2. Activated JNK signaling in PD-L1-depeted cells was due to reduced mRNA stability of the CYLD deubiquitinase. PD-L1 was found to compete with the ribonuclease EXOSC10 for binding to CYLD mRNA. Thus, loss of PD-L1 promoted binding and degradation of CYLD mRNA by EXOSC10 which enhanced JNK activity. An irreversible JNK inhibitor (JNK-IN-8) reduced BimThr116 phosphorylation and unsequestered Bim from MCL-1 and BCL-2 to promote apoptosis. In cells lacking PD-L1, treatment with JNK-IN-8, an MCL-1 antagonist (AZD5991), or their combination promoted apoptosis and reduced long-term clonogenic survival by anticancer drugs. Similar effects of the JNK inhibitor on cell viability were observed in CRC organoids with suppression of PD-L1. These data indicate that JNK inhibition may represent a promising strategy to overcome drug resistance in CRC cells with low or absent PD-L1 expression.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Irreversible inhibition of JNK using JNK-IN-8 suppresses the interaction of Bim with MCL-1/BCL-2 in PD-L1 knockout cells.
Fig. 2: Loss of PD-L1 destabilizes CYLD mRNA and activates JNK signaling in RKO cells.
Fig. 3: The JNK inhibitor JNK-IN-8 sensitizes PD-L1 knockout cells to multiple anticancer drugs.
Fig. 4: Patient-derived CRC organoids with PD-L1 knockdown were sensitized to chemotherapy by JNK inhibition.
Fig. 5: BH3 mimetics inhibit the interaction of Bim with MCL-1/BCL-2 in PD-L1 knockout cells.
Fig. 6: Combination of inhibitors of JNK (JNK-IN-8), MCL-1 (AZD5991), and MEK1/2 (cobimetinib) overcomes drug resistance in PD-L1 knockout cells.

References

  1. 1.

    Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5:1365–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Hamanishi J, Mandai M, Matsumura N, Abiko K, Baba T, Konishi I. PD-1/PD-L1 blockade in cancer treatment: perspectives and issues. Int J Clin Oncol. 2016;21:462–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer. 2019;19:133–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Qiu XY, Hu DX, Chen WQ, Chen RQ, Qian SR, Li CY, et al. PD-L1 confers glioblastoma multiforme malignancy via Ras binding and Ras/Erk/EMT activation. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1754–69.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Feng D, Qin B, Pal K, Sun L, Dutta S, Dong H, et al. BRAF(V600E)-induced, tumor intrinsic PD-L1 can regulate chemotherapy-induced apoptosis in human colon cancer cells and in tumor xenografts. Oncogene. 2019;38:6752–66.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2:647–56.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Gilley J, Coffer PJ, Ham J. FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J Cell Biol. 2003;162:613–22.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Biswas SC, Shi Y, Sproul A, Greene LA. Pro-apoptotic Bim induction in response to nerve growth factor deprivation requires simultaneous activation of three different death signaling pathways. J Biol Chem. 2007;282:29368–74.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Ley R, Ewings KE, Hadfield K, Cook SJ. Regulatory phosphorylation of Bim: sorting out the ERK from the JNK. Cell Death Differ. 2005;12:1008–14.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Hubner A, Barrett T, Flavell RA, Davis RJ. Multisite phosphorylation regulates Bim stability and apoptotic activity. Mol Cell. 2008;30:415–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Ewings KE, Hadfield-Moorhouse K, Wiggins CM, Wickenden JA, Balmanno K, Gilley R, et al. ERK1/2-dependent phosphorylation of BimEL promotes its rapid dissociation from Mcl-1 and Bcl-xL. EMBO J. 2007;26:2856–67.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Cheng EH, Levine B, Boise LH, Thompson CB, Hardwick JM. Bax-independent inhibition of apoptosis by Bcl-XL. Nature. 1996;379:554–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, et al. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell. 2001;8:705–11.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Laine A, Ronai Z. Ubiquitin chains in the ladder of MAPK signaling. Sci STKE. 2005;2005:re5.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Noguchi T, Takeda K, Matsuzawa A, Saegusa K, Nakano H, Gohda J, et al. Recruitment of tumor necrosis factor receptor-associated factor family proteins to apoptosis signal-regulating kinase 1 signalosome is essential for oxidative stress-induced cell death. J Biol Chem. 2005;280:37033–40.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Haeusgen W, Herdegen T, Waetzig V. The bottleneck of JNK signaling: molecular and functional characteristics of MKK4 and MKK7. Eur J Cell Biol. 2011;90:536–44.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Hayakawa J, Mittal S, Wang Y, Korkmaz KS, Adamson E, English C, et al. Identification of promoters bound by c-Jun/ATF2 during rapid large-scale gene activation following genotoxic stress. Mol Cell. 2004;16:521–35.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Shi CS, Kehrl JH. Tumor necrosis factor (TNF)-induced germinal center kinase-related (GCKR) and stress-activated protein kinase (SAPK) activation depends upon the E2/E3 complex Ubc13-Uev1A/TNF receptor-associated factor 2 (TRAF2). J Biol Chem. 2003;278:15429–34.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Habelhah H, Takahashi S, Cho SG, Kadoya T, Watanabe T, Ronai Z. Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-kappaB. EMBO J. 2004;23:322–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Zhang T, Inesta-Vaquera F, Niepel M, Zhang J, Ficarro SB, Machleidt T, et al. Discovery of potent and selective covalent inhibitors of JNK. Chem Biol. 2012;19:140–54.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Yu J, Qin B, Moyer AM, Nowsheen S, Liu T, Qin S, et al. DNA methyltransferase expression in triple-negative breast cancer predicts sensitivity to decitabine. J Clin Investig. 2018;128:2376–88.

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Qin B, Minter-Dykhouse K, Yu J, Zhang J, Liu T, Zhang H, et al. DBC1 functions as a tumor suppressor by regulating p53 stability. Cell Rep. 2015;10:1324–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE, et al. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science. 2007;315:856–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009;9:537–49.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Ley R, Balmanno K, Hadfield K, Weston C, Cook SJ. Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, Bim. J Biol Chem. 2003;278:18811–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G. The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature. 2003;424:801–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature. 2003;424:793–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Tu X, Qin B, Zhang Y, Zhang C, Kahila M, Nowsheen S, et al. PD-L1 (B7-H1) Competes with the RNA Exosome to Regulate the DNA Damage Response and Can Be Targeted to Sensitize to Radiation or Chemotherapy. Mol Cell. 2019;74:1215–26.e1214.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Ramkissoon A, Chaney KE, Milewski D, Williams KB, Williams RL, Choi K, et al. Targeted Inhibition of the Dual Specificity Phosphatases DUSP1 and DUSP6 Suppress MPNST Growth via JNK. Clin Cancer Res. 2019;25:4117–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Tron AE, Belmonte MA, Adam A, Aquila BM, Boise LH, Chiarparin E, et al. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat Commun. 2018;9:5341.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    S Soderquist R, Eastman A. BCL2 Inhibitors as Anticancer Drugs: a Plethora of Misleading BH3 Mimetics. Mol Cancer Ther. 2016;15:2011–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Kulangara K, Zhang N, Corigliano E, Guerrero L, Waldroup S, Jaiswal D, et al. Clinical Utility of the Combined Positive Score for Programmed Death Ligand-1 Expression and the Approval of Pembrolizumab for Treatment of Gastric Cancer. Arch Pathol Lab Med. 2019;143:330–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Lei K, Davis RJ. JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA. 2003;100:2432–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Xue L, Igaki T, Kuranaga E, Kanda H, Miura M, Xu T. Tumor suppressor CYLD regulates JNK-induced cell death in Drosophila. Dev Cell. 2007;13:446–54.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Sun SC. CYLD: a tumor suppressor deubiquitinase regulating NF-kappaB activation and diverse biological processes. Cell Death Differ. 2010;17:25–34.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Zinder JC, Lima CD. Targeting RNA for processing or destruction by the eukaryotic RNA exosome and its cofactors. Genes Dev. 2017;31:88–100.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Pefanis E, Wang J, Rothschild G, Lim J, Kazadi D, Sun J, et al. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell. 2015;161:774–89.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Vasilevskaya I, O’Dwyer PJ. Role of Jun and Jun kinase in resistance of cancer cells to therapy. Drug Resist Updat. 2003;6:147–56.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000;103:239–52.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Bain J, McLauchlan H, Elliott M, Cohen P. The specificities of protein kinase inhibitors: an update. Biochem J. 2003;371:199–204.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Ramsdale R, Jorissen RN, Li FZ, Al-Obaidi S, Ward T, Sheppard KE, et al. The transcription cofactor c-JUN mediates phenotype switching and BRAF inhibitor resistance in melanoma. Sci Signal. 2015;8:ra82.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  42. 42.

    Delmas A, Cherier J, Pohorecka M, Medale-Giamarchi C, Meyer N, Casanova A, et al. The c-Jun/RHOB/AKT pathway confers resistance of BRAF-mutant melanoma cells to MAPK inhibitors. Oncotarget. 2015;6:15250–64.

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Lipner MB, Peng XL, Jin C, Xu Y, Gao Y, East MP, et al. Irreversible JNK1-JUN inhibition by JNK-IN-8 sensitizes pancreatic cancer to 5-FU/FOLFOX chemotherapy. JCI Insight. 2020;5:e129905

    PubMed Central  Article  Google Scholar 

  44. 44.

    Ebelt ND, Kaoud TS, Edupuganti R, Van Ravenstein S, Dalby KN, Van Den Berg CL. A c-Jun N-terminal kinase inhibitor, JNK-IN-8, sensitizes triple negative breast cancer cells to lapatinib. Oncotarget. 2017;8:104894–912.

    PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Hui L, Zatloukal K, Scheuch H, Stepniak E, Wagner EF. Proliferation of human HCC cells and chemically induced mouse liver cancers requires JNK1-dependent p21 downregulation. J Clin Investig. 2008;118:3943–53.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2002;2:183–92.

    CAS  Article  Google Scholar 

  47. 47.

    Sheng J, Fang W, Yu J, Chen N, Zhan J, Ma Y, et al. Expression of programmed death ligand-1 on tumor cells varies pre and post chemotherapy in non-small cell lung cancer. Sci Rep. 2016;6:20090.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Wyss J, Dislich B, Koelzer VH, Galvan JA, Dawson H, Hadrich M, et al. Stromal PD-1/PD-L1 Expression Predicts Outcome in Colon Cancer Patients. Clin Colorectal Cancer. 2019;18:e20–38.

    PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported, by NCI R01 CA210509-01A1 and Mayo Clinic Center for Biomedical Discovery Pilot Grant Program (both to FAS). LS is supported by the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China. AP is supported by the Rosztoczy Foundation Hungarian Scholarship Program.

Author information

Affiliations

Authors

Contributions

FS and BQ designed the experiments, BQ and LS performed the experiments, TLH and MEF provided the organoid model, LS, BQ, and FS analyzed and interpreted the study data. BQ and FS wrote the paper that was reviewed by all authors.

Corresponding authors

Correspondence to Bo Qin or Frank A. Sinicrope.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Patai, Á.V., Hogenson, T.L. et al. Irreversible JNK blockade overcomes PD-L1-mediated resistance to chemotherapy in colorectal cancer. Oncogene 40, 5105–5115 (2021). https://doi.org/10.1038/s41388-021-01910-6

Download citation

Search

Quick links