Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The HSF1/miR-135b-5p axis induces protective autophagy to promote oxaliplatin resistance through the MUL1/ULK1 pathway in colorectal cancer


Oxaliplatin (oxa) is widely used in the treatment of colorectal cancer (CRC), but the development of oxaliplatin resistance is a major obstacle to the therapeutic efficacy in patients. MicroRNAs (miRNAs), endogenous noncoding RNAs measuring between 22 and 24 nucleotides, have been shown to be involved in the development of CRC drug resistance. However, the mechanism by which differentially expressed miRNAs induce chemotherapy resistance in CRC has not been fully elucidated to date. Here, we showed the differentially expressed miRNAs in oxaliplatin-sensitive and oxaliplatin-resistant CRC cells through miRNA microarray technology and found that miR-135b-5p was significantly increased in oxaliplatin-resistant cells. And miR-135b-5p was increased in the serum of colorectal cancer patients. More importantly, the miR-135b-5p level in the serum of oxaliplatin-resistant patients was further increased compared to that of oxaliplatin-sensitive patients. Recent studies have shown that protective autophagy is an important mechanism that promotes drug resistance in tumors. The potential role of miR-135b-5p in inducing protective autophagy and promoting oxaliplatin resistance was evaluated in two stable oxaliplatin-resistant CRC cell lines and their parental cells. We further identified MUL1 as a direct downstream target of miR-135b-5p and showed that MUL1 could degrade the key molecule of autophagy, ULK1, through ubiquitination. Mouse xenograft models were adopted to evaluate the correlation between miR-135b-5p and oxaliplatin-induced autophagy in vivo. Furthermore, we also investigated the regulatory factors for the upregulation of miR-135b-5p in CRC cells under oxaliplatin chemotoxicity. These results indicated that miR-135b-5p upregulation in colorectal cancer could induce protective autophagy through the MUL1/ULK1 signaling pathway and promote oxaliplatin resistance. Targeting miR-135b-5p may provide a new treatment strategy for reversing oxaliplatin resistance in CRC.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The increased expression of miR-135b-5p was associated with oxaliplatin resistance in colorectal cancer.
Fig. 2: miR-135b-5p promotes colorectal cancer proliferation and oxaliplatin resistance.
Fig. 3: Oxaliplatin induces protective autophagy in colorectal cancer.
Fig. 4: miR-135b-5p promotes oxaliplatin resistance in colorectal cancer cell lines by inducing protective autophagy.
Fig. 5: MUL1 is predicted and verified as the direct target of miR-135b-5p.
Fig. 6: The miR-135b-5p/MUL1 axis regulated autophagy activity by ubiquitinating ULK1.
Fig. 7: miR-135b-5p promotes oxaliplatin resistance by inducing protective autophagy in vivo.
Fig. 8: Inhibition of autophagy could reverse oxaliplatin resistance induced by miR-135b-5p in colorectal cancer.


  1. 1.

    Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69:363–85.

    PubMed  Article  Google Scholar 

  2. 2.

    Poultsides GA, Servais EL, Saltz LB, Patil S, Kemeny NE, Guillem JG, et al. Outcome of primary tumor in patients with synchronous stage IV colorectal cancer receiving combination chemotherapy without surgery as initial treatment. J Clin Oncol. 2009;27:3379–84.

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    André T, Vernerey D, Mineur L, Bennouna J, Desrame J, Faroux R, et al. Three versus 6 months of oxaliplatin-based adjuvant chemotherapy for patients with stage iii colon cancer: disease-free survival results from a randomized, open-label, international duration evaluation of adjuvant (IDEA) France, phase III trial. J Clin Oncol. 2018;36:1469–77.

    PubMed  Article  Google Scholar 

  4. 4.

    Hong YS, Nam BH, Kim KP, Kim JE, Park SJ, Park YS, et al. Oxaliplatin, fluorouracil, and leucovorin versus fluorouracil and leucovorin as adjuvant chemotherapy for locally advanced rectal cancer after preoperative chemoradiotherapy (ADORE): an open-label, multicentre, phase 2, randomised controlled trial. Lancet Oncol. 2014;15:1245–53.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Goldberg RM, Sargent DJ, Morton RF, Fuchs CS, Ramanathan RK, Williamson SK, et al. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J Clin Oncol. 2004;22:23–30.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Liu T, Zhang X, Du L, Wang Y, Liu X, Tian H, et al. Exosome-transmitted miR-128-3p increase chemosensitivity of oxaliplatin-resistant colorectal cancer. Mol Cancer. 2019;18:43.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. 7.

    Sun W, Li J, Zhou L, Han J, Liu R, Zhang H, et al. The c-Myc/miR-27b-3p/ATG10 regulatory axis regulates chemoresistance in colorectal cancer. Theranostics. 2020;10:1981–96.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16:203–22.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev Pathol. 2009;4:199–227.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9:102–14.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Wang N, Tao L, Zhong H, Zhao S, Yu Y, Yu B, et al. miR-135b inhibits tumour metastasis in prostate cancer by targeting STAT6. Oncol Lett. 2016;11:543–50.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K, Ohyashiki JH. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood. 2014;124:3748–57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Su W, Mo Y, Wu F, Guo K, Li J, Luo Y, et al. miR-135b reverses chemoresistance of non-small cell lung cancer cells by downregulation of FZD1. Biomedicine Pharmacother. 2016;84:123–9.

    CAS  Article  Google Scholar 

  14. 14.

    Bai M, Li J, Yang H, Zhang H, Zhou Z, Deng T, et al. miR-135b delivered by gastric tumor exosomes inhibits FOXO1 expression in endothelial cells and promotes angiogenesis. Mol Ther. 2019;27:1772–83.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Chen H, Mao M, Jiang J, Zhu D, Li P. Circular RNA CDR1as acts as a sponge of miR-135b-5p to suppress ovarian cancer progression. OncoTargets Ther. 2019;12:3869–79.

    CAS  Article  Google Scholar 

  16. 16.

    Magalhaes L, Quintana LG, Lopes DCF, Vidal AF, Pereira AL, D’Araujo Pinto LC, et al. APC gene is modulated by hsa-miR-135b-5p in both diffuse and intestinal gastric cancer subtypes. BMC Cancer. 2018;18:1055.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Zhang Y, Xia F, Zhang F, Cui Y, Wang Q, Liu H, et al. miR-135b-5p enhances doxorubicin-sensitivity of breast cancer cells through targeting anterior gradient 2. J Exp Clin cancer Res. 2019;38:26.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Zhang Z, Che X, Yang N, Bai Z, Wu Y, Zhao L, et al. miR-135b-5p Promotes migration, invasion and EMT of pancreatic cancer cells by targeting NR3C2. Biomedicine Pharmacother. 2017;96:1341–8.

    CAS  Article  Google Scholar 

  19. 19.

    Shao L, Chen Z, Soutto M, Zhu S, Lu H, Romero-Gallo J, et al. Helicobacter pylori-induced miR-135b-5p promotes cisplatin resistance in gastric cancer. FASEB J. 2019;33:264–74.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Liu B, Liu Y, Zhao L, Pan Y, Shan Y, Li Y, et al. Upregulation of microRNA-135b and microRNA-182 promotes chemoresistance of colorectal cancer by targeting ST6GALNAC2 via PI3K/AKT pathway. Mol carcinogenesis. 2017;56:2669–80.

    CAS  Article  Google Scholar 

  21. 21.

    Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin cell Biol. 2010;22:124–31.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 2017;170:548–.e516.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Zhou C, Yi C, Yi Y, Qin W, Yan Y, Dong X, et al. LncRNA PVT1 promotes gemcitabine resistance of pancreatic cancer via activating Wnt/β-catenin and autophagy pathway through modulating the miR-619-5p/Pygo2 and miR-619-5p/ATG14 axes. Mol cancer. 2020;19:118.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Pan X, Chen Y, Shen Y, Tantai J. Knockdown of TRIM65 inhibits autophagy and cisplatin resistance in A549/DDP cells by regulating miR-138-5p/ATG7. Cell death Dis. 2019;10:429.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. 25.

    Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147:728–41.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Yu L, Chen Y, Tooze SA. Autophagy pathway: cellular and molecular mechanisms. Autophagy. 2018;14:207–15.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Zachari M, Ganley IG. The mammalian ULK1 complex and autophagy initiation. Essays Biochem. 2017;61:585–96.

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Puri R, Cheng XT, Lin MY, Huang N, Sheng ZH. Mul1 restrains Parkin-mediated mitophagy in mature neurons by maintaining ER-mitochondrial contacts. Nat Commun. 2019;10:3645.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29.

    Li J, Qi W, Chen G, Feng D, Liu J, Ma B, et al. Mitochondrial outer-membrane E3 ligase MUL1 ubiquitinates ULK1 and regulates selenite-induced mitophagy. Autophagy. 2015;11:1216–29.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Slater AF. Chloroquine: mechanism of drug action and resistance in Plasmodium falciparum. Pharmacol Therap. 1993;57:203–35.

    CAS  Article  Google Scholar 

  31. 31.

    Lv ZD, Xin HN, Yang ZC, Wang WJ, Dong JJ, Jin LY, et al. miR-135b promotes proliferation and metastasis by targeting APC in triple-negative breast cancer. J Cell Physiol. 2019;234:10819–26.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Wang Q, Cao T, Guo K, Zhou Y, Liu H, Pan Y, et al. Regulation of integrin subunit alpha 2 by miR-135b-5p modulates chemoresistance in gastric cancer. Front Oncol. 2020;10:308.

    PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Bertoli G, Cava C, Castiglioni I. MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics. 2015;5:1122–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Seo HA, Moeng S, Sim S, Kuh HJ, Choi SY, Park JK. MicroRNA-based combinatorial cancer therapy: effects of MicroRNAs on the efficacy of anti-cancer therapies. Cells. 2019;9:29.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  35. 35.

    Iqbal MA, Arora S, Prakasam G, Calin GA, Syed MA. MicroRNA in lung cancer: role, mechanisms, pathways and therapeutic relevance. Mol Asp Med. 2019;70:3–20.

    CAS  Article  Google Scholar 

  36. 36.

    Mishra S, Yadav T, Rani V. Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit Rev Oncol/Hematol. 2016;98:12–23.

    Article  Google Scholar 

  37. 37.

    Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol cell Biol. 2018;19:349–64.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221:3–12.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17:528–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999;402:672–6.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Lorente J, Velandia C, Leal JA, Garcia-Mayea Y, Lyakhovich A, Kondoh H, et al. The interplay between autophagy and tumorigenesis: exploiting autophagy as a means of anticancer therapy. Biol Rev Camb Philos Soc. 2018;93:152–65.

    PubMed  Article  Google Scholar 

  42. 42.

    Neuspiel M, Schauss AC, Braschi E, Zunino R, Rippstein P, Rachubinski RA, et al. Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr Biol. 2008;18:102–8.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A, et al. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE. 2008;3:e1487.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Zhang B, Huang J, Li HL, Liu T, Wang YY, Waterman P, et al. GIDE is a mitochondrial E3 ubiquitin ligase that induces apoptosis and slows growth. Cell Res. 2008;18:900–10.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Vihervaara A, Sistonen L. HSF1 at a glance. J cell Sci. 2014;127:261–6.

    CAS  PubMed  Article  Google Scholar 

Download references


This work was supported by grants from the National Natural Science Foundation of China (Nos. 82072664, 81772629, 81802363, 81702431, 81772843, 81974374) and the Demonstrative Research Platform of Clinical Evaluation Technology for New Anticancer Drugs (No. 2018ZX09201015). This work was also supported by the Tianjin Science Foundation (Nos. 18JCQNJC81900, 18JCYBJC92000, 18JCYBJC25400, 18JCYBJC92900, 20JCYBJC00100) and the Science & Technology Development Fund of the Tianjin Education Commission for Higher Education (2018KJ046, 2017KJ227). The funders had no role in the study design, the data collection and analysis, the interpretation of the data, the writing of the report, and the decision to submit this article for publication.

Author information




HW, XW and HZ performed most of the experiments, analyzed the data, and wrote the manuscript. TD, RL, YL and HL reviewed and edited the manuscript. MB, TN, JW, GS performed some of the experiments. YB designed the experiments and is the guarantor of this work, had full access to all of the data in the study, takes responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding author

Correspondence to Yi Ba.

Ethics declarations


The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, X., Zhang, H. et al. The HSF1/miR-135b-5p axis induces protective autophagy to promote oxaliplatin resistance through the MUL1/ULK1 pathway in colorectal cancer. Oncogene 40, 4695–4708 (2021).

Download citation


Quick links