Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FOXM1 is required for small cell lung cancer tumorigenesis and associated with poor clinical prognosis

A Correction to this article was published on 12 October 2021

This article has been updated

Abstract

Small cell lung cancer (SCLC) continues to cause poor clinical outcomes due to limited advances in sustained treatments for rapid cancer cell proliferation and progression. The transcriptional factor Forkhead Box M1 (FOXM1) regulates cell proliferation, tumor initiation, and progression in multiple cancer types. However, its biological function and clinical significance in SCLC remain unestablished. Analysis of the Cancer Cell Line Encyclopedia and SCLC datasets in the present study disclosed significant upregulation of FOXM1 mRNA in SCLC cell lines and tissues. Gene set enrichment analysis (GSEA) revealed that FOXM1 is positively correlated with pathways regulating cell proliferation and DNA damage repair, as evident from sensitization of FOXM1-depleted SCLC cells to chemotherapy. Furthermore, Foxm1 knockout inhibited SCLC formation in the Rb1fl/flTrp53fl/flMycLSL/LSL (RPM) mouse model associated with increased levels of neuroendocrine markers, Ascl1 and Cgrp, and decrease in Yap1. Consistently, FOXM1 depletion in NCI-H1688 SCLC cells reduced migration and enhanced apoptosis and sensitivity to cisplatin and etoposide. SCLC with high FOXM1 expression (Nā€‰=ā€‰30, 57.7%) was significantly correlated with advanced clinical stage, extrathoracic metastases, and decrease in overall survival (OS), compared with the low-FOXM1 group (7.90 vs. 12.46 months). Moreover, the high-FOXM1 group showed shorter progression-free survival after standard chemotherapy, compared with the low-FOXM1 group (3.90 vs. 8.69 months). Our collective findings support the utility of FOXM1 as a prognostic biomarker and potential molecular target for SCLC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analysis of FOXM1 mRNA expression in SCLC cell lines and tissues.
Fig. 2: FOXM1 is correlated with SCLC markers and other biological processes in vivo.
Fig. 3: Deletion of Foxm1 prevents small cell lung cancer tumorigenesis in Rb1fl/fl Trp53fl/fl MycLSL/LSL (RPM) mice.
Fig. 4: Increased cell proliferation and neuroendocrine marker levels of SCLC tumors in RPM mice.
Fig. 5: Depletion of FOXM1 reduces SCLC cell survival in response to cisplatin-based chemotherapy agents, cell migration, and anchorage-independent growth in soft agar.
Fig. 6: SCLC specimen staining and quantitative scoring.
Fig. 7: Kaplanā€“Meier plot of overall survival (OS) and progression-free survival (PFS) curves of SCLC patients at NTUH-HC.

Similar content being viewed by others

Change history

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7ā€“30.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  2. George J, Lim JS, Jang SJ, Cun Y, Ozretic L, Kong G, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524:47ā€“53.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  3. Alexandrov LB, Ju YS, Haase K, Van Loo P, Martincorena I, Nik-Zainal S, et al. Mutational signatures associated with tobacco smoking in human cancer. Science. 2016;354:618ā€“22.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  4. Jackman DM, Johnson BE. Small-cell lung cancer. Lancet. 2005;366:1385ā€“96.

    CASĀ  PubMedĀ  Google ScholarĀ 

  5. Kalemkerian GP, Akerley W, Bogner P, Borghaei H, Chow LQ, Downey RJ, et al. Small cell lung cancer. J Natl Compr Canc Netw. 2013;11:78ā€“98.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  6. Karim SM, Zekri J. Chemotherapy for small cell lung cancer: a comprehensive review. Oncol Rev. 2012;6:e4.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  7. Ramalingam SS, Vansteenkiste J, Planchard D, Cho BC, Gray JE, Ohe Y, et al. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N. Engl J Med. 2020;382:41ā€“50.

    CASĀ  PubMedĀ  Google ScholarĀ 

  8. Mok T, Camidge DR, Gadgeel SM, Rosell R, Dziadziuszko R, Kim DW, et al. Updated overall survival and final progression-free survival data for patients with treatment-naive advanced ALK-positive non-small-cell lung cancer in the ALEX study. Ann Oncol. 2020;31:1056ā€“64.

    CASĀ  PubMedĀ  Google ScholarĀ 

  9. Nicholson AG, Chansky K, Crowley J, Beyruti R, Kubota K, Turrisi A, et al. The international association for the study of lung cancer lung cancer staging project: proposals for the revision of the clinical and pathologic staging of small cell lung cancer in the forthcoming eighth edition of the TNM classification for lung cancer. J Thorac Oncol. 2016;11:300ā€“11.

    PubMedĀ  Google ScholarĀ 

  10. Semenova EA, Nagel R, Berns A. Origins, genetic landscape, and emerging therapies of small cell lung cancer. Genes Dev. 2015;29:1447ā€“62.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Meuwissen R, Linn SC, Linnoila RI, Zevenhoven J, Mooi WJ, Berns A. Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell. 2003;4:181ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  12. Mollaoglu G, Guthrie MR, Bohm S, Bragelmann J, Can I, Ballieu PM, et al. MYC drives progression of small cell lung cancer to a variant neuroendocrine subtype with vulnerability to aurora kinase inhibition. Cancer Cell. 2017;31:270ā€“85.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Koo CY, Muir KW, Lam EW. FOXM1: from cancer initiation to progression and treatment. Biochim Biophys Acta. 2012;1819:28ā€“37.

    CASĀ  PubMedĀ  Google ScholarĀ 

  14. Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, Park HJ, et al. Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol. 2005;25:10875ā€“94.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Laoukili J, Kooistra MR, Bras A, Kauw J, Kerkhoven RM, Morrison A, et al. FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat Cell Biol. 2005;7:126ā€“36.

    CASĀ  PubMedĀ  Google ScholarĀ 

  16. Nestal de Moraes G, Delbue D, Silva KL, Robaina MC, Khongkow P, Gomes AR, et al. FOXM1 targets XIAP and Survivin to modulate breast cancer survival and chemoresistance. Cell Signal. 2015;27:2496ā€“505.

    CASĀ  PubMedĀ  Google ScholarĀ 

  17. Okada K, Fujiwara Y, Takahashi T, Nakamura Y, Takiguchi S, Nakajima K, et al. Overexpression of forkhead box M1 transcription factor (FOXM1) is a potential prognostic marker and enhances chemoresistance for docetaxel in gastric cancer. Ann Surg Oncol. 2013;20:1035ā€“43.

    PubMedĀ  Google ScholarĀ 

  18. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21:938ā€“45.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  19. Pandit B, Halasi M, Gartel AL. p53 negatively regulates expression of FoxM1. Cell Cycle. 2009;8:3425ā€“7.

    CASĀ  PubMedĀ  Google ScholarĀ 

  20. Barsotti AM, Prives C. Pro-proliferative FoxM1 is a target of p53-mediated repression. Oncogene. 2009;28:4295ā€“305.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  21. Karachaliou N, Rosell R, Viteri S. The role of SOX2 in small cell lung cancer, lung adenocarcinoma and squamous cell carcinoma of the lung. Transl Lung Cancer Res. 2013;2:172ā€“9.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. Wierstra I, Alves J. FOXM1c transactivates the human c-myc promoter directly via the two TATA boxes P1 and P2. Febs J. 2006;273:4645ā€“67.

    CASĀ  PubMedĀ  Google ScholarĀ 

  23. Wang Z, Park HJ, Carr JR, Chen YJ, Zheng Y, Li J, et al. FoxM1 in tumorigenicity of the neuroblastoma cells and renewal of the neural progenitors. Cancer Res. 2011;71:4292ā€“302.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. Ustiyan V, Wert SE, Ikegami M, Wang IC, Kalin TV, Whitsett JA, et al. Foxm1 transcription factor is critical for proliferation and differentiation of Clara cells during development of conducting airways. Dev Biol. 2012;370:198ā€“212.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  25. Bhat UG, Halasi M, Gartel AL. FoxM1 is a general target for proteasome inhibitors. PLoS One. 2009;4:e6593.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  26. Carr JR, Park HJ, Wang Z, Kiefer MM, Raychaudhuri P. FoxM1 mediates resistance to herceptin and paclitaxel. Cancer Res. 2010;70:5054ā€“63.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Wang IC, Meliton L, Tretiakova M, Costa RH, Kalinichenko VV, Kalin TV. Transgenic expression of the forkhead box M1 transcription factor induces formation of lung tumors. Oncogene. 2008;27:4137ā€“49.

    CASĀ  PubMedĀ  Google ScholarĀ 

  28. Raychaudhuri P, Park HJ. FoxM1: a master regulator of tumor metastasis. Cancer Res. 2011;71:4329ā€“33.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Wang IC, Chen YJ, Hughes DE, Ackerson T, Major ML, Kalinichenko VV, et al. FoxM1 regulates transcription of JNK1 to promote the G1/S transition and tumor cell invasiveness. J Biol Chem. 2008;283:20770ā€“8.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Gemenetzidis E, Elena-Costea D, Parkinson EK, Waseem A, Wan H, Teh MT. Induction of human epithelial stem/progenitor expansion by FOXM1. Cancer Res. 2010;70:9515ā€“26.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Laoukili J, Stahl M, Medema RH. FoxM1: at the crossroads of ageing and cancer. Biochim Biophys Acta. 2007;1775:92ā€“102.

    CASĀ  PubMedĀ  Google ScholarĀ 

  32. Borromeo MD, Savage TK, Kollipara RK, He M, Augustyn A, Osborne JK, et al. ASCL1 and NEUROD1 reveal heterogeneity in pulmonary neuroendocrine tumors and regulate distinct genetic programs. Cell Rep. 2016;16:1259ā€“72.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. McColl K, Wildey G, Sakre N, Lipka MB, Behtaj M, Kresak A, et al. Reciprocal expression of INSM1 and YAP1 defines subgroups in small cell lung cancer. Oncotarget. 2017;8:73745ā€“56.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Rudin CM, Poirier JT, Byers LA, Dive C, Dowlati A, George J, et al. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat Rev Cancer. 2019;19:289ā€“97.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  35. Ireland AS, Micinski AM, Kastner DW, Guo B, Wait SJ, Spainhower KB, et al. MYC drives temporal evolution of small cell lung cancer subtypes by reprogramming neuroendocrine fate. Cancer Cell. 2020;38:60ā€“78. e12

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  36. Jiang L, Huang J, Higgs BW, Hu Z, Xiao Z, Yao X, et al. Genomic landscape survey identifies SRSF1 as a key oncodriver in small cell lung cancer. PLoS Genet. 2016;12:e1005895.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  37. Wang IC, Ustiyan V, Zhang Y, Cai Y, Kalin TV, Kalinichenko VV. Foxm1 transcription factor is required for the initiation of lung tumorigenesis by oncogenic Kras(G12D.). Oncogene. 2014;33:5391ā€“6.

    CASĀ  PubMedĀ  Google ScholarĀ 

  38. Dammert MA, Bragelmann J, Olsen RR, Bohm S, Monhasery N, Whitney CP, et al. MYC paralog-dependent apoptotic priming orchestrates a spectrum of vulnerabilities in small cell lung cancer. Nat Commun. 2019;10:3485.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  39. Peifer M, Fernandez-Cuesta L, Sos ML, George J, Seidel D, Kasper LH, et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet. 2012;44:1104ā€“10.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. Byers LA, Wang J, Nilsson MB, Fujimoto J, Saintigny P, Yordy J, et al. Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. Cancer Disco. 2012;2:798ā€“811.

    CASĀ  Google ScholarĀ 

  41. Gardner EE, Lok BH, Schneeberger VE, Desmeules P, Miles LA, Arnold PK, et al. Chemosensitive relapse in small cell lung cancer proceeds through an EZH2-SLFN11 Axis. Cancer Cell. 2017;31:286ā€“99.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Pan CH, Chang YF, Lee MS, Wen BC, Ko JC, Liang SK, et al. Vorinostat enhances the cisplatin-mediated anticancer effects in small cell lung cancer cells. BMC Cancer. 2016;16:857.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  43. Davies AM, Lara PN Jr., Mack PC, Gandara DR. Incorporating bortezomib into the treatment of lung cancer. Clin Cancer Res. 2007;13:s4647ā€“4651.

    PubMedĀ  Google ScholarĀ 

  44. Pal S, Kozono D, Yang X, Fendler W, Fitts W, Ni J, et al. Dual HDAC and PI3K inhibition abrogates NFkappaB- and FOXM1-mediated DNA damage response to radiosensitize pediatric high-grade gliomas. Cancer Res. 2018;78:4007ā€“21.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  45. Kim SH, Joshi K, Ezhilarasan R, Myers TR, Siu J, Gu C, et al. EZH2 protects glioma stem cells from radiation-induced cell death in a MELK/FOXM1-dependent manner. Stem Cell Rep. 2015;4:226ā€“38.

    CASĀ  Google ScholarĀ 

  46. Fang P, Madden JA, Neums L, Moulder RK, Forrest ML, Chien J. Olaparib-induced adaptive response is disrupted by FOXM1 targeting that enhances sensitivity to PARP Inhibition. Mol Cancer Res. 2018;16:961ā€“73.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  47. Gartel AL. A new target for proteasome inhibitors: FoxM1. Expert Opin Investig Drugs. 2010;19:235ā€“42.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  48. Taromi S, Lewens F, Arsenic R, Sedding D, Sanger J, Kunze A, et al. Proteasome inhibitor bortezomib enhances the effect of standard chemotherapy in small cell lung cancer. Oncotarget. 2017;8:97061ā€“78.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  49. Ghandi M, Huang FW, Jane-Valbuena J, Kryukov GV, Lo CC, McDonald ER 3rd, et al. Next-generation characterization of the cancer cell line encyclopedia. Nature. 2019;569:503ā€“8.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  50. Sato T, Kaneda A, Tsuji S, Isagawa T, Yamamoto S, Fujita T, et al. PRC2 overexpression and PRC2-target gene repression relating to poorer prognosis in small cell lung cancer. Sci Rep. 2013;3:1911.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  51. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90ā€“97.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  52. Keenan AB, Torre D, Lachmann A, Leong AK, Wojciechowicz ML, Utti V, et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 2019;47:W212ā€“W224.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  53. Varemo L, Nielsen J, Nookaew I. Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res. 2013;41:4378ā€“91.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  54. Krupczak-Hollis K, Wang X, Kalinichenko VV, Gusarova GA, Wang IC, Dennewitz MB, et al. The mouse Forkhead Box m1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ducts and vessels during liver morphogenesis. Dev Biol. 2004;276:74ā€“88.

    CASĀ  PubMedĀ  Google ScholarĀ 

  55. Stec DE, Davisson RL, Haskell RE, Davidson BL, Sigmund CD. Efficient liver-specific deletion of a floxed human angiotensinogen transgene by adenoviral delivery of Cre recombinase in vivo. J Biol Chem. 1999;274:21285ā€“90.

    CASĀ  PubMedĀ  Google ScholarĀ 

  56. van Diest PJ, van Dam P, Henzen-Logmans SC, Berns E, van der Burg ME, Green J, et al. A scoring system for immunohistochemical staining: consensus report of the task force for basic research of the EORTC-GCCG. European Organization for Research and Treatment of Cancer-Gynaecological Cancer Cooperative Group. J Clin Pathol. 1997;50:801ā€“4.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  57. Goldstraw P, Crowley J, Chansky K, Giroux DJ, Groome PA, Rami-Porta R, et al. The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J Thorac Oncol. 2007;2:706ā€“14.

    PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

We thank all study participants and staff at NTUH-HC for their contribution to this project, Feng-Yuan Tsai (NHRI), and NHRI Laboratory Animal Center (LA-109-PP-01), and I-BEN Service (TSSI-BN-31) for technical assistance, Stephen Elledge (Harvard Medical School) for kindly providing the pInducer10-mir-RUP-PheS plasmid, Pradip Raychaudhuri (UIC) and Vladimir Kalinichenko (CCHMC) for kindly providing the Foxm1fl/fl mice. This work was supported by the National Taiwan University Hospital Hsinchu Branch research grant NTUH-HC 108-s267 (S-K L), the Ministry of Science and Technology of Taiwan grant MOST105-2628ā€Bā€007ā€003ā€MY3 and MOST109-2314-B-007-005-MY3 (I-C W), National Tsing Hua University grant 108Q2502E1, 109Q2714E1, 110Q2501E1 (I-C W), and by the Brain Research Center under the Higher Education Sprout Project, co-funded by the Ministry of Education and the Ministry of Science and Technology in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I-Ching Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisherā€™s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Materials and Methods

Supplementary Figure Legends

Fig. S1_Acquisition of the ratio of soft tissue, nodules and tumors in the lung.

Fig. S2_A panel of chest microCT images of the individual mice

Fig. S3_A representative immunohistochemistry (IHC) for semi-quantification

Fig. S4_Cgrp expression in the developing lung tumors of RPM mice

Fig. S5_Increased expression of FOXM1 stimulates mouse Cgrp promoter activity

41388_2021_1895_MOESM8_ESM.pdf

Fig. S6_The clonogenic cell survival assay for the FOXM1-depleted NCI-H1688 cells after cisplatin-based chemotherapeutic reagents treatment

Fig. S7_FOXM1 inhibitors suppressed SCLC cell survival in response to cisplatin-based chemotherapy agents

Fig. S8_FOXM1 is critical to SCLC-associated biological processes in vitro

Fig. S9_Expression of MYC, MYCN and MYCL1 are mutually exclusive in SCLC patient dataset GSE60052

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, SK., Hsu, CC., Song, HL. et al. FOXM1 is required for small cell lung cancer tumorigenesis and associated with poor clinical prognosis. Oncogene 40, 4847ā€“4858 (2021). https://doi.org/10.1038/s41388-021-01895-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01895-2

This article is cited by

Search

Quick links