Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

COL11A1 activates cancer-associated fibroblasts by modulating TGF-β3 through the NF-κB/IGFBP2 axis in ovarian cancer cells

Abstract

Ovarian cancer has a unique tumor microenvironment (TME) that enables cancer-associated fibroblasts (CAFs) to interact with cellular and matrix constituents and influence tumor development and migration into the peritoneal cavity. Collagen type XI alpha 1 (COL11A1) is overexpressed in CAFs; therefore this study examines its role during CAF activation in epithelial ovarian cancer (EOC). Coculturing human ovarian fibroblasts (HOFs) with high COL11A1-expressing EOC cells or exposure to the conditioned medium of these cells prompted the expression of COL11A1 and CAF phenotypes. Conversely, coculturing HOFs with low COL11A1-expressing EOC cells or COL11A1-knockdown abrogated COL11A1 overexpression and secretion, in addition to CAF activation. Increased p-SP1 expression attributed to COL11A1-mediated extracellular signal-regulated kinase activation (ERK) induced p65 translocation into the nucleus and augmented its binding to the insulin-like growth factor binding protein 2 (IGFBP2) promoter, ultimately inducing TGF-β3 activation. The CAF–cancer cell crosstalk triggered interleukin-6 release, which in turn promoted EOC cell proliferation and invasiveness. These in vitro results were confirmed by in vivo findings in a mouse model, showing that COL11A1 overexpression in EOC cells promoted tumor formation and CAF activation, which was inhibited by TGF-β3 antibody. Human tumors with high TGF-β3 levels showed elevated expression of COL11A1 and IGFBP2, which was associated with poor survival. Our findings suggest the possibility that anti-TGF-β3 treatment strategy may be effective in targeting CAFs in COL11A1-positive ovarian tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: COL11A1 in EOC cells prompts normal HOFs to acquire CAF features and express COL11A1.
Fig. 2: CAF activation prompts HOF cell growth, invasive ability, and cell contraction.
Fig. 3: TGF-β3 is involved in COL11A1-induced CAF activation.
Fig. 4: COL11A1 regulates TGF-β3 through the NF-κB/IGFBP2 axis.
Fig. 5: CAFs activated by COL11A1 secrete IL-6 to promote ovarian cancer cell growth and invasion.
Fig. 6: COL11A1 promotes tumor formation and regulates CAF activation in vivo.
Fig. 7: Five-year overall survival and progression-free survival.

Similar content being viewed by others

References

  1. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020. https://doi.org/10.1038/s41568-019-0238-1.

    Article  PubMed  PubMed Central  Google Scholar 

  2. D’Arcangelo E, Wu NC, Cadavid JL, McGuigan AP. The life cycle of cancer-associated fibroblasts within the tumour stroma and its importance in disease outcome. Br J Cancer. 2020. https://doi.org/10.1038/s41416-019-0705-1.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bell D, Berchuck A, Birrer M, Chien J, Cramer DW, Cancer Genome Atlas Research Network, et al. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15.

  4. Ahmed N, Stenvers KL. Getting to know ovarian cancer ascites: opportunities for targeted therapy-based translational research. Front Oncol. 2013;3:256.

    PubMed  PubMed Central  Google Scholar 

  5. Worzfeld T, Pogge von Strandmann E, Huber M, Adhikary T, Wagner U, Reinartz S, et al. The unique molecular and cellular microenvironment of ovarian cancer. Front Oncol. 2017;7:24.

    PubMed  PubMed Central  Google Scholar 

  6. Pogge von Strandmann E, Reinartz S, Wager U, Müller R. Tumor-host cell interactions in ovarian cancer: pathways to therapy failure. Trends Cancer. 2017;3:137–48.

    CAS  PubMed  Google Scholar 

  7. Wu YH, Chang TH, Huang YF, Huang HD, Chou CY. COL11A1 promotes tumor progression and predicts poor clinical outcome in ovarian cancer. Oncogene. 2014;33:3432–40.

    CAS  PubMed  Google Scholar 

  8. Wu YH, Chang TH, Huang YF, Chen CC, Chou CY. COL11A1 confers chemoresistance on ovarian cancer cells through the activation of Akt/c/EBPβ pathway and PDK1 stabilization. Oncotarget. 2015;6:23748–63.

    PubMed  PubMed Central  Google Scholar 

  9. Wu YH, Huang YF, Chang TH, Chou CY. Activation of TWIST1 by COL11A1 promotes chemoresistance and inhibits apoptosis in ovarian cancer cells by modulating NF-κB-mediated IKKβ expression. Int J Cancer. 2017;141:2305–17.

    CAS  PubMed  Google Scholar 

  10. Cheon DJ, Tong Y, Sim MS, Dering J, Berel D, Cui X, et al. A collagen-remodeling gene signature regulated by TGF-β signaling is associated with metastasis and poor survival in serous ovarian cancer. Clin Cancer Res. 2014;20:711–23.

    CAS  PubMed  Google Scholar 

  11. Rada M, Nallanthighal S, Cha J, Ryan K, Sage J, Eldred C, et al. Inhibitor of apoptosis proteins (IAPs) mediate collagen type XI Alpha 1-driven cisplatin resistance in ovarian cancer. Oncogene. 2018;37:4809–20.

    CAS  PubMed  Google Scholar 

  12. Nallanthighal S, Rada M, Heiserman JP, Cha J, Sage J, Zhou B, et al. Inhibition of collagen XI alpha 1-induced fatty acid oxidation triggers apoptotic cell death in cisplatin-resistant ovarian cancer. Cell Death Dis. 2020;11:258.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fischer H, Stenling R, Rubio C, Lindblom A. Colorectal carcinogenesis is associated with stromal expression of COL11A1 and COL5A2. Carcinogenesis. 2001;22:875–8.

    CAS  PubMed  Google Scholar 

  14. Navab R, Strumpf D, Bandarchi B, Zhu CQ, Pintilie M, Ramnarine VR, et al. Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer. Proc Natl Acad Sci USA. 2011;108:7160–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Erkan M, Weis N, Pan Z, Schwager C, Samkharadze T, Jiang X, et al. Organ-, inflammation- and cancer specific transcriptional fingerprints of pancreatic and hepatic stellate cells. Mol Cancer. 2010;9:88.

    PubMed  PubMed Central  Google Scholar 

  16. García-Pravia C, Galván JA, Gutiérrez-Corral N, Solar-García L, García-Pérez E, García-Ocaña M, et al. Overexpression of COL11A1 by cancer-associated fibroblasts: clinical relevance of a stromal marker in pancreatic cancer. PLoS ONE. 2013;8:e78327.

    PubMed  PubMed Central  Google Scholar 

  17. Park H, Lee Y, Lee H, Kim JW, Hwang JH, Kim J, et al. The prognostic significance of cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. Tumour Biol. 2017;39:1010428317718403.

    PubMed  Google Scholar 

  18. Yeung TL, Leung CS, Wong KK, Samimi G, Thompson MS, Liu J, et al. TGF-β modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment. Cancer Res. 2013;73:5016–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cazals V, Nabeyrat E, Corroyer S, de Keyzer Y, Clement A. Role for NF-kappa B in mediating the effects of hyperoxia on IGF-binding protein 2 promoter activity in lung alveolar epithelial cells. Biochim Biophys Acta. 1999;1448:349–62.

    CAS  PubMed  Google Scholar 

  20. Xing F, Saidou J, Watabe K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci. 2010;15:166–79.

    CAS  PubMed Central  Google Scholar 

  21. Tao L, Huang G, Song H, Chen Y, Chen L. Cancer associated fibroblasts: An essential role in the tumor microenvironment. Oncol Lett. 2017;14:2611–20.

    PubMed  PubMed Central  Google Scholar 

  22. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020. https://doi.org/10.1038/s41568-019-0238-1.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Biffi G, Oni TE, Spielman B, Hao Y, Elyada E, Park Y, et al. IL1-Induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 2019;9:282–301.

    PubMed  Google Scholar 

  24. Mienaltowski MJ, Birk DE. Structure, physiology, and biochemistry of collagens. Adv Exp Med Biol. 2014;802:5–29.

    CAS  PubMed  Google Scholar 

  25. Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell. 2018;33:463–79.e10.

    CAS  PubMed  Google Scholar 

  26. Stover DG, Bierie B, Moses HL. A delicate balance: TGF-β and the tumor microenvironment. J Cell Biochem. 2007;101:851–61. Review.

    CAS  PubMed  Google Scholar 

  27. Verona EV, Elkahloun AG, Yang J, Bandyopadhyay A, Yeh IT, Sun LZ. Transforming growth factor-β signaling in prostate stromal cells supports prostate carcinoma growth by up-regulating stromal genes related to tissue remodeling. Cancer Res. 2007;67:5737–46.

    CAS  PubMed  Google Scholar 

  28. Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet. 2001;29:117–29.

    CAS  PubMed  Google Scholar 

  29. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pickup M, Novitskiy S, Moses HL. The roles of TGFβ in the tumour microenvironment. Nat Rev Cancer. 2013;13:788–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Papageorgis P. TGFβ Signaling in tumor initiation, epithelial-to-mesenchymal transition, and metastasis. J Oncol. 2015;2015:587193.

    PubMed  PubMed Central  Google Scholar 

  32. Cheon DJ, Tong Y, Sim MS, Dering J, Berel D, Cui X, et al. A collagen-remodeling gene signature regulated by TGF-β signaling is associated with metastasis and poor survival in serous ovarian cancer. Clin Cancer Res. 2014;20:711–23.

    CAS  PubMed  Google Scholar 

  33. Bierie B, Stover DG, Abel TW, Chytil A, Gorska AE, Aakre M, et al. Transforming growth factor-β regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment. Cancer Res. 2008;68:1809–19.

    CAS  PubMed  Google Scholar 

  34. Barcellos-Hoff MH, Medina D. New highlights on stroma-epithelial interactions in breast cancer. Breast Cancer Res. 2004;7:33–6.

    PubMed  PubMed Central  Google Scholar 

  35. Zigrino P, Löffek S, Mauch C. Tumor-stroma interactions: their role in the control of tumor cell invasion. Biochimie. 2005;87:321–8.

    CAS  PubMed  Google Scholar 

  36. Hawsawi NM, Ghebeh H, Hendrayani SF, Tulbah A, Al-Eid M, Al-Tweigeri T, et al. Breast carcinoma-associated fibroblasts and their counterparts display neoplastic-specific changes. Cancer Res. 2008;68:2717–25.

    CAS  PubMed  Google Scholar 

  37. Rønnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Investig. 1995;95:859–73.

    PubMed  PubMed Central  Google Scholar 

  38. Ren B, Yee KO, Lawler J, Khosravi-Far R. Regulation of tumor angiogenesis by thrombospondin-1. Biochim Biophys Acta. 2006;1765:178–88. Review.

    CAS  PubMed  Google Scholar 

  39. Yu Y, Xiao CH, Tan LD, Wang QS, Li XQ, Feng YM. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. Br J Cancer. 2014;110:724–32.

    CAS  PubMed  Google Scholar 

  40. Bartlett JM, Langdon SP, Scott WN, Love SB, Miller EP, Katsaros D, et al. Transforming growth factor-beta isoform expression in human ovarian tumours. Eur J Cancer. 1997;33:2397–403.

    CAS  PubMed  Google Scholar 

  41. Hong SH, Ondrey FG, Avis IM, Chen Z, Loukinova E, Cavanaugh PF Jr., et al. Cyclooxygenase regulates human oropharyngeal carcinomas via the proinflammatory cytokine IL-6: a general role for inflammation? FASEB J. 2000;14:1499–507.

    CAS  PubMed  Google Scholar 

  42. Bran G, Gotte K, Riedel K, Hormann K, Riedel F. IL-6 antisense-mediated growth inhibition in a head and neck squamous cell carcinoma cell line. In Vivo. 2011;25:579–84.

    CAS  PubMed  Google Scholar 

  43. Chen MF, Wang WH, Lin PY, Lee KD, Chen WC. Significance of the TGF-beta1/IL-6 axis in oral cancer. Clin Sci. 2012;122:459–72.

    CAS  Google Scholar 

  44. Cirri P, Chiarugi P. Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res. 2011;1:482–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Browning L, Patel MR, Horvath EB, Tawara K, Jorcyk CL. IL-6 and ovarian cancer: inflammatory cytokines in promotion of metastasis. Cancer Manag Res. 2018;10:6685–93.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Science Council (MOST: No. 108-2314-B-384-011-MY3 and 108-2314-B-006-061-MY2). The study was also supported by grants from the Chi Mei Medical Center, Liouying Campus (CLFHR10822, CLFHR10911, CMLMOST10901, and CLFHR10921).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soon-Cen Huang or Cheng-Yang Chou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YH., Huang, YF., Chang, TH. et al. COL11A1 activates cancer-associated fibroblasts by modulating TGF-β3 through the NF-κB/IGFBP2 axis in ovarian cancer cells. Oncogene 40, 4503–4519 (2021). https://doi.org/10.1038/s41388-021-01865-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01865-8

This article is cited by

Search

Quick links