Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The landscape and biological relevance of aberrant alternative splicing events in esophageal squamous cell carcinoma

Abstract

Aberrant alternative splicing events (AASEs) are key biological processes for tumorigenesis and the rationale for designing splice-switching oligonucleotides (SSOs). However, the landscape of AASEs in esophageal squamous cell carcinoma (ESCC) remains unclear, which undermines the development of SSOs for ESCC. Here, we profiled AASEs based on 125 pairs of RNA-seq libraries. We identified 14,710 AASEs in ESCC, most of which (92.67%) affected coding genes. The first exon of transcripts was frequently changed in ESCC. We constructed a regulatory network where 74 RNA-binding proteins regulated 2142 AASEs. This network was enriched in apoptotic pathways and various adhesion/junction-related processes. Somatic mutations in ESCC regulating ASEs were mainly through trans-regulatory mode and were enriched in intron regions. Isoform switches of apoptotic genes and binding genes both tended to induce “noncoding transcripts” and “domain loss,” disrupting the apoptotic and Hippo signaling pathways. All ESCC samples were grouped into three clusters with different AASEs patterns and the second cluster was identified as “cold tumor,” with a low abundance of immune cells, activated immune pathways, and immunomodulators. Our work comprehensively profiled the landscape of AASEs in ESCC, revealed novel AASEs related to tumorigenesis and immune microenvironment, and suggested promising directions for designing SSOs for ESCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of aberrant alternative splicing events (AASEs) and related genes in ESCC.
Fig. 2: Regulation of AASEs by RNA-binding proteins (RBPs).
Fig. 3: Regulation of ASEs by somatic mutations.
Fig. 4: Details of apoptotic genes associated with AASEs.
Fig. 5: Details of binding genes associated with AASEs.
Fig. 6: Alternative splicing is related to the tumor immune microenvironment.

Similar content being viewed by others

Data availability

Genomic and transcriptomic data are available under accession no. PRJCA002085 in the Genome Sequence Archive of Beijing Institute of Genomics, Chinese Academy of Sciences.

References

  1. Mao S, Li Y, Lu Z, Che Y, Sun S, Huang J, et al. Survival-associated alternative splicing signatures in esophageal carcinoma. Carcinogenesis. 2019;40:121–30.

    Article  CAS  PubMed  Google Scholar 

  2. Lagergren J, Smyth E, Cunningham D, Lagergren P. Oesophageal cancer. Lancet. 2017;390:2383–96.

    Article  PubMed  Google Scholar 

  3. Rustgi AK, El-Serag HB. Esophageal carcinoma. N Engl J Med. 2014;371:2499–509.

    Article  PubMed  Google Scholar 

  4. Pennathur A, Gibson MK, Jobe BA, Luketich JD. Oesophageal carcinoma. Lancet. 2013;381:400–12.

    Article  PubMed  Google Scholar 

  5. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456:470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pan Q, Shai O, Lee LJ, Frey J, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40:1413–5.

    Article  CAS  PubMed  Google Scholar 

  7. Chabot B, Shkreta L. Defective control of pre-messenger RNA splicing in human disease. J Cell Biol. 2016;212:13–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Halloy F, Iyer PS, Ćwiek P, Ghidini A, Barman-Aksözen J, Wildner-Verhey van Wijk N, et al. Delivery of oligonucleotides to bone marrow to modulate ferrochelatase splicing in a mouse model of erythropoietic protoporphyria. Nucleic Acids Res. 2020;48:4658–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. O K, C W. Oligonucleotide therapies for disorders of the nervous system. Nat Biotechnol. 2017;35:249–63.

    Article  Google Scholar 

  10. Michaels WE, Bridges RJ, Hastings ML. Antisense oligonucleotide-mediated correction of CFTR splicing improves chloride secretion in cystic fibrosis patient-derived bronchial epithelial cells. Nucleic Acids Res. 2020;48:7454–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang L, Kempton JB, Jiang H, Jodelka FM, Brigande AM, Dumont RA, et al. Fetal antisense oligonucleotide therapy for congenital deafness and vestibular dysfunction. Nucleic Acids Res. 2020;48:5065–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mogilevsky M, Shimshon O, Kumar S, Mogilevsky A, Keshet E, Yavin E, et al. Modulation of MKNK2 alternative splicing by splice-switching oligonucleotides as a novel approach for glioblastoma treatment. Nucleic Acids Res. 2018;46:11396–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li L, Hobson L, Perry L, Clark B, Heavey S, Haider A, et al. Targeting the ERG oncogene with splice-switching oligonucleotides as a novel therapeutic strategy in prostate cancer. Br J Cancer. 2020;123:1024–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brandt AC, McNally L, Lorimer EL, Unger B, Koehn OJ, Suazo KF, et al. Splice switching an oncogenic ratio of SmgGDS isoforms as a strategy to diminish malignancy. Proc Natl Acad Sci USA. 2020;117:3627–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. ST C, JL W, CF B, BF B. RNA-targeted therapeutics. Cell Metab. 2018;27:714–39.

    Article  Google Scholar 

  16. J D, P B-G, M C-F. Targeting mRNA processing as an anticancer strategy. Nat Rev Drug Discov. 2020;19:112–29.

    Article  Google Scholar 

  17. Matlin AJ, Clark F, Smith CWJ. Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol. 2005;6:386–98.

    Article  CAS  PubMed  Google Scholar 

  18. Wahl MC, Will CL, Luhrmann R. The spliceosome: design principles of a dynamic RNP machine. Cell. 2009;136:701–18.

    Article  CAS  PubMed  Google Scholar 

  19. Bonnal SC, López-Oreja I, Valcárcel J. Roles and mechanisms of alternative splicing in cancer - implications for care. Nat Rev Clinical oncology. 2020;17:457–74.

    Article  PubMed  Google Scholar 

  20. Garrido-Martín D, Borsari B, Calvo M, Reverter F, Guigó R. Identification and analysis of splicing quantitative trait loci across multiple tissues in the human genome. Nat Commun. 2021;12:727.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Uhlen M, Zhang C, Lee S, Sjostedt E, Fagerberg L, Bidkhori G, et al. A pathology atlas of the human cancer transcriptome. Science. 2017;357:660.

    Article  CAS  Google Scholar 

  22. Boise LH, González-García M, Postema CE, Ding L, Lindsten T, Turka LA, et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell. 1993;74:597–608.

    Article  CAS  PubMed  Google Scholar 

  23. Frankiw L, Baltimore D, Li G. Alternative mRNA splicing in cancer immunotherapy. Nat Rev Immunol. 2019;19:675–87.

    Article  CAS  PubMed  Google Scholar 

  24. Xie ZC, Wu HY, Ma FC, Dang YW, Peng ZG, Zhou HF, et al. Prognostic alternative splicing signatures and underlying regulatory network in esophageal carcinoma. Am J Transl Res. 2019;11:4010–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Li SL, Hu ZX, Zhao YJ, Huang SL, He XH. Transcriptome-wide analysis reveals the landscape of aberrant alternative splicing events in liver cancer. Hepatology. 2019;69:359–75.

    Article  CAS  PubMed  Google Scholar 

  26. Vanharanta S, Marney CB, Shu W, Valiente M, Zou Y, Mele A, et al. Loss of the multifunctional RNA-binding protein RBM47 as a source of selectable metastatic traits in breast cancer. eLife. 2014;3:e02734

    Article  PubMed Central  Google Scholar 

  27. Warzecha CC, Jiang P, Amirikian K, Dittmar KA, Lu HZ, Shen SH, et al. An ESRP-regulated splicing programme is abrogated during the epithelial-mesenchymal transition. EMBO J. 2010;29:3286–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Akgul C, Moulding DA, Edwards SW. Alternative splicing of Bcl-2-related genes: functional consequences and potential therapeutic applications. Cell Mol Life Sci. 2004;61:2189–99.

    Article  CAS  PubMed  Google Scholar 

  29. Peterson RE, Hoffman S, Kern MJ. Opposing roles of two isoforms of the Prx1 homeobox gene in chondrogenesis. Dev Dyn. 2005;233:811–21.

    Article  CAS  PubMed  Google Scholar 

  30. Soliman MA, Berardi P, Pastyryeva S, Bonnefin P, Feng X, Colina A, et al. ING1a expression increases during replicative senescence and induces a senescent phenotype. Aging Cell. 2008;7:783–94.

    Article  CAS  PubMed  Google Scholar 

  31. Liu Y, Huang W, Gao X, Kuang F. Regulation between two alternative splicing isoforms ZNF148(FL) and ZNF148(ΔN), and their roles in the apoptosis and invasion of colorectal cancer. Pathol, Res Pract. 2019;215:272–7.

    Article  CAS  Google Scholar 

  32. Lucena-Araujo AR, Kim HT, Thome C, Jacomo RH, Melo RA, Bittencourt R, et al. High delta Np73/TAp73 ratio is associated with poor prognosis in acute promyelocytic leukemia. Blood. 2015;126:2302–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aigner P, Mizutani T, Horvath J, Eder T, Heber S, Lind K, et al. STAT3β is a tumor suppressor in acute myeloid leukemia. Blood Adv. 2019;3:1989–2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu M, An H, Zhang Y, Sun W, Cheng S, Wang R, et al. Molecular analysis of Chinese oesophageal squamous cell carcinoma identifies novel subtypes associated with distinct clinical outcomes. EBioMedicine. 2020;57:102831.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al. GENCODE: the reference human genome annotation for the ENCODE Project. Genome Res. 2012;22:1760–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Trincado JL, Entizne JC, Hysenaj G, Singh B, Skalic M, Elliott DJ, et al. SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions. Genome Biol. 2018;19:40

    Article  PubMed  PubMed Central  Google Scholar 

  39. Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol. 2015;33:831.

    Article  CAS  PubMed  Google Scholar 

  40. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ryan M, Wong WC, Brown R, Akbani R, Su X, Broom B, et al. TCGASpliceSeq a compendium of alternative mRNA splicing in cancer. Nucleic Acids Res. 2016;44:D1018–22.

    Article  CAS  PubMed  Google Scholar 

  42. Ryan MC, Cleland J, Kim R, Wong WC, Weinstein JN. SpliceSeq: a resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts. Bioinformatics. 2012;28:2385–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shabalin AA. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics. 2012;28:1353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vitting-Seerup K, Sandelin A. IsoformSwitchAnalyzeR: analysis of changes in genome-wide patterns of alternative splicing and its functional consequences. Bioinformatics. 2019;35:4469–71.

    Article  CAS  PubMed  Google Scholar 

  46. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The Pfam protein families database. Nucleic Acids Res. 2011;40:D290–301.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kang Y-J, Yang D-C, Kong L, Hou M, Meng Y-Q, Wei L, et al. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 2017;45:W12–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37:420–3.

    Article  CAS  PubMed  Google Scholar 

  49. Klausen MS, Jespersen MC, Nielsen H, Jensen KK, Jurtz VI, Sønderby CK, et al. NetSurfP-2.0: improved prediction of protein structural features by integrated deep learning. 2018. https://doi.org/10.1101/311209.

  50. de la Fuente L, Arzalluz-Luque Á, Tardáguila M, Tardáguila M, del Risco H, Martí C, et al. tappAS: a comprehensive computational framework for the analysis of the functional impact of differential splicing. 2019. https://doi.org/10.1101/690743.

  51. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sturm G, Finotello F, Petitprez F, Zhang JD, Baumbach J, Fridman WH, et al. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Bioinformatics. 2019;35:i436–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, et al. Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med. 2019;11:34.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D. Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. eLife. 2017;6:e26476.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18:220.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J, et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol. 2016;17:174.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016;17:218.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinform. 2013;14:7.

    Article  Google Scholar 

  59. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The immune landscape of cancer. Immunity. 2018;48:812–30.e814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics. 2010;26:1572–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Research Fund of Key Laboratory of Xinjiang oncology (Grant no. 2017D04006). Funders only provided funding and had no role in the study design, data collection, data analysis, interpretation, and writing of the report. The authors thank Dr Wen Zhang (Department of Immunology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China) for providing technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Liu or Kaitai Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Zhang, Y., An, H. et al. The landscape and biological relevance of aberrant alternative splicing events in esophageal squamous cell carcinoma. Oncogene 40, 4184–4197 (2021). https://doi.org/10.1038/s41388-021-01849-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01849-8

This article is cited by

Search

Quick links