Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GPC5 suppresses lung cancer progression and metastasis via intracellular CTDSP1/AhR/ARNT signaling axis and extracellular exosome secretion

Abstract

Lung cancer is the leading cause of cancer-related death worldwide. Glypican-5 (GPC5) is a member of heparan sulfate proteoglycans, and its biological importance in initiation and progression of lung cancer remains controversial. In the present study, we revealed that GPC5 transcriptionally enhanced the expression of CTDSP1 (miR-26b host gene) via AhR-ARNT pathway, and such up-regulation of CTDSP1 intracellularly contributed to the inhibited proliferation of lung cancer cells. Moreover, exosomes derived from GPC5-overexpressing human lung cancer cells (GPC5-OE-derived exosomes) had an extracellular repressive effect on human lymphatic endothelial cells (hLECs), leading to decreased tube formation and migration. Comparison between GPC5-WT- and GPC5-OE-derived exosomes showed that miR-26b (embedded within introns of CTDSP1 gene) was significantly up-regulated in GPC5-OE-derived exosomes and critical to the influence on hLECs. On the mechanism, we demonstrated that miR-26b transferred into hLECs directly targeted to PTK2 3’-UTR and led to PTK2 down-regulation, resulting in defects in tube formation and migration of hLECs. By uncovering the regulation network among GPC5, miR-26b, miR-26b host gene (CTDSP1), and target gene (PTK2), our findings demonstrated that GPC5 functioned as a tumor suppressor in human lung cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GPC5 inhibits the proliferation of lung adenocarcinoma cells in vitro.
Fig. 2: GPC5 transcriptionally elevates the expression of CTDSP1.
Fig. 3: GPC5 activates the expression of CTDSP1 via AhR-ARNT pathway.
Fig. 4: GPC5 elevated CTDSP1 contributes to the impaired cell proliferation in lung adenocarcinoma cells in vitro.
Fig. 5: GPC5 elevated CTDSP1 contributes to the impaired cell proliferation in lung adenocarcinoma cells in vivo.
Fig. 6: Exosomes derived from GPC5-overexpressing human lung cancer cells significantly inhibits tube formation and migration of hLECs.
Fig. 7: Exosomes derived from GPC5-overexpressing human lung cancer cells inhibits tube formation and migration of hLECs via delivery of miR-26b.
Fig. 8: Exosomal miR-26b inhibits the tube formation and migration of hLECs through targeting PTK2.
Fig. 9: GPC5-CTDSP1 signaling inhibits tumor lymph node metastasis in vivo.
Fig. 10: GPC5-CTDSP1 signaling inhibits tumor lymph node metastasis via delivery of exosomal miR-26b in vivo.

Similar content being viewed by others

Data availability

All data and genetic material used in this paper are available from the authors on request.

References

  1. Noone A, Howlader N, Krapcho M, Miller D, Brest A, Yu M et al. SEER Cancer Statistics Review (CSR) 1975–2015, National Cancer Institute 2018.

  2. Devarakonda S, Morgensztern D, Govindan R. Genomic alterations in lung adenocarcinoma. Lancet Oncology. 2015;16:e342–51.

    Article  CAS  PubMed  Google Scholar 

  3. Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, et al. Genomic landscape of non-samll cell lung cancer in smokers and never smokers. Cell. 2012;150:1121–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kruspig B, Monteverde T, Neidler S, Hock A, Kerr E, Nixon C. et al. The ERBB network facilitates KRAS-driven lung tumorigenesis. Sci Transl Med. 2018;10:eaav9152.

    Article  Google Scholar 

  5. Lito P, Solomon M, Li L-S, Hansen R, Rosen N. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science. 2016;351:604–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013;503:548–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ, Wu Y, et al. Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389:299–311.

    Article  CAS  PubMed  Google Scholar 

  8. Veugelers M, Vermeesch J, Reekmans G, Steinfeld R, Marynen P, David G. Characterization of glypican-5 and chromosomal localization of human GPC5, a new member of the glypican gene family. Genomics. 1997;40:24–30.

    Article  CAS  PubMed  Google Scholar 

  9. Nishimura R, Takita J, Satootsubo A, Kato M, Koh K, Hanada R, et al. Characterization of genetic lesions in rhabdomyosarcoma using a high-density single nucleotide polymorphism array. Cancer Sci. 2013;104:856–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Williamson D, Selfe J, Gordon T, Lu Y, Pritchardjones K, Murai K, et al. Role for amplification and expression of glypican-5 in rhabdomyosarcoma. Cancer Res. 2007;67:57–65.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang C, Zhang S, Zhang D, Zhang Z, Xu Y, Liu S. A lung cancer gene GPC5 could also be crucial in breast cancer. Mol Genet Metab. 2011;103:104–5.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang C, Liu Z, Wang L, Qiao B, Du E, Li L, et al. Prognostic significance of GPC5 expression in patients with prostate cancer. Tumor Biol. 2016;37:6413–8.

    Article  CAS  Google Scholar 

  13. Li Y, Yang P. GPC5 gene and its related pathways in lung cancer. J Thorac Oncol. 2011;6:2–5.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li Y, Sheu C, Ye Y, De Andrade M, Wang L, Chang S, et al. Genetic variants and risk of lung cancer in never smokers: a genome-wide association study. Lancet Oncol. 2010;11:321–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang X, Zhang Z, Qiu M, Hu J, Fan X, Wang J, et al. Glypican-5 is a novel metastasis suppressor gene in non-small cell lung cancer. Cancer Lett. 2013;341:265–73.

    Article  CAS  PubMed  Google Scholar 

  16. Wang S, Qiu M, Xia W, Xu Y, Mao Q, Wang J, et al. Glypican-5 suppresses Epithelial-Mesenchymal Transition of the lung adenocarcinoma by competitively binding to Wnt3a. Oncotarget. 2016;7:79736–46.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li F, Shi W, Capurro M, Filmus J. Glypican-5 stimulates rhabdomyosarcoma cell proliferation by activating Hedgehog signaling. J Cell Biol. 2011;192:691–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li Y, Miao L, Cai H, Ding J, Xiao Y, Yang J, et al. The overexpression of glypican-5 promotes cancer cell migration and is associated with shorter overall survival in non-small cell lung cancer. Oncol Lett. 2013;6:1565–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alitalo K. The lymphatic vasculature in disease. Nat Med. 2011;17:1371–80.

    Article  CAS  PubMed  Google Scholar 

  20. Butler JM, Kobayashi H, Rafii S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer. 2010;10:138–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cao Y. Emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nat Rev Cancer. 2005;5:735–43.

    Article  CAS  PubMed  Google Scholar 

  22. Wang Z, Chen JQ, Liu JL, Tian L. Exosomes in tumor microenvironment: novel transporters and biomarkers. J Transl Med. 2016;14:297.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Broekman ML, Maas SLN, Abels ER, Mempel TR, Krichevsky AM, Breakefield XO. Multidimensional communication in the microenvirons of glioblastoma. Nat Rev Neurol. 2018;14:482–95.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Poggio M, Hu T, Pai CC, Chu B, Belair CD, Chang A. et al. Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell. 2019;177:414–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ. Extracellular vesicles in cancer - implications for future improvements in cancer care. Nat Rev Clin Oncol. 2018;15:617–38.

    Article  CAS  PubMed  Google Scholar 

  26. Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560:382–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. LeBleu VS, Kalluri R. Exosomes exercise inhibition of anti-tumor immunity during chemotherapy. Immunity. 2019;50:547–9.

    Article  CAS  PubMed  Google Scholar 

  28. Ovrevik J, Lag M, Lecureur V, Gilot D, Lagadicgossmann D, Refsnes M, et al. AhR and Arnt differentially regulate NF-κB signaling and chemokine responses in human bronchial epithelial cells. Cell Commun Signal. 2014;12:48–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Swanson H. DNA binding and protein interactions of the AHR/ARNT heterodimer that facilitate gene activation. Chem Biol Interact. 2002;141:63–76.

    Article  CAS  PubMed  Google Scholar 

  30. Tian Y. Ah receptor and NF-κB interplay on the stage of epigenome. Biochemical Pharmacol. 2009;77:670–80.

    Article  CAS  Google Scholar 

  31. Chen Y, Buyel JJ, Hanssen MJW, Siegel F, Pan R, Naumann J, et al. Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity. Nat Commun. 2016;7:11420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hulsmans M, Holvoet P. MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease. Cardiovascular Res. 2013;100:7–18.

    Article  CAS  Google Scholar 

  33. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of MicroRNAs in living cells. J Biol Chem. 2010;285:17442–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang J, Li S, Li L, Li M, Guo C, Yao J, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics, Proteom Bioinforma. 2015;13:17–24.

    Article  CAS  Google Scholar 

  35. Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, Holzmann A, et al. Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Investig. 2014;124:2136–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Costasilva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015;17:816–26.

    Article  CAS  Google Scholar 

  37. Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 2015;17:183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015;527:100–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu Y, Lu Y, Zhang Q, Liu J, Li T, Yang J, et al. MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein. Nucleic Acids Res. 2012;40:4615–25.

    Article  CAS  PubMed  Google Scholar 

  40. Yuan S, Yu Z, Liu Q, Zhang MQ, Xiang Y, Wu N, et al. GPC5, a novel epigenetically silenced tumor suppressor, inhibits tumor growth by suppressing Wnt/β-catenin signaling in lung adenocarcinoma. Oncogene. 2016;35:6120–31.

    Article  CAS  PubMed  Google Scholar 

  41. Valadi H, Ekstrom KM, Bossios A, Sjostrand M, Lee JJ, Lotvall J. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell. 2010;39:133–44.

    Article  CAS  PubMed  Google Scholar 

  43. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  44. Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition. PLOS Biol. 2005;3:e85.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lewis BP, Shih I, Jonesrhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115:787–98.

    Article  CAS  PubMed  Google Scholar 

  46. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.

    Article  CAS  PubMed  Google Scholar 

  47. Ameres SL, Martinez J, Schroeder R. Molecular basis for target RNA recognition and cleavage by human RISC. Cell. 2007;130:101–12.

    Article  CAS  PubMed  Google Scholar 

  48. Mallory AC, Reinhart BJ, Jonesrhoades MW, Tang G, Zamore PD, Barton MK, et al. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5¿ region. EMBO J. 2004;23:3356–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all patients involved in this study.

Funding

This work was supported by grants from the Natural Science Foundation of China (82072561), the Natural Science Youth Foundation of China (81501971, 31701111, 31700792), Project funded by China Postdoctoral Science Foundation (2018M630603), the Natural Science Youth Foundation of Jiangsu Province (BK20150252, BK20170295), the Human Resource Summit Grant of Jiangsu Province (WSW-142), and the Youth Medical Professionals Foundation of Jiangsu Province (QNRC2016279).

Author information

Authors and Affiliations

Authors

Contributions

XY, YZ, JTJ, MJ, and CPW designed this study. XY and YZ performed all experiments; CW and QL collected tissue samples and the clinical data; JW and WWH analyzed and interpreted the data; WQZ, WW, and RC drafted the paper. All authors read and approved the final paper.

Corresponding authors

Correspondence to Xin Yang, Jing Ting Jiang or Mei Ji.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent for publication

Written consents for publication were obtained from all the patients involved in our study.

Ethics approval and consent to participate

Written informed consent for the biological studies was obtained from each patient involved in the study, and the study was approved by the Ethics Committee of the Third Affiliated Hospital of Soochow University. All animal studies were approved by the Animal Experimental Committee of the Third Affiliated Hospital of Soochow University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Chen, Y., Zhou, Y. et al. GPC5 suppresses lung cancer progression and metastasis via intracellular CTDSP1/AhR/ARNT signaling axis and extracellular exosome secretion. Oncogene 40, 4307–4323 (2021). https://doi.org/10.1038/s41388-021-01837-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01837-y

This article is cited by

Search

Quick links