Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FMR1/circCHAF1A/miR-211-5p/HOXC8 feedback loop regulates proliferation and tumorigenesis via MDM2-dependent p53 signaling in GSCs

Abstract

Glioma is the most common and fatal primary malignant brain tumor. Glioma stem cells (GSCs) may be an important factor in glioma cell proliferation, invasion, chemoradiotherapy tolerance, and recurrence. Therefore, discovering novel GSCs related circular RNAs (circRNAs) may finds out a prospective target for the treatment of glioma. A novel circRNA-CHAF1A (circCHAF1A) was first found in our study. CircCHAF1A was overexpressed in glioma and related to the low survival rate. Functionally, it was found that no matter in vitro or in vivo, circCHAF1A can facilitate the proliferation and tumorigenesis of TP53wt GSCs. Mechanistically, circCHAF1A upregulated transcription factor HOXC8 expression in GSCs through miR-211-5p sponging. Then, HOXC8 can transcriptionally upregulate MDM2 expression and inhibited the antitumor effect of p53. Furtherly, the RNA binding protein FMR1 can bind to and promoted the expression of circCHAF1A via maintaining its stability, while HOXC8 also transcribed the FMR1 expression to form a feedback loop, which may be involved in the malignant transformation of glioma. The novel feedback loop among FMR1, circCHAF1A, miR-211-5p, and HOXC8 in GSCs can facilitate the proliferation and tumorigenesis of glioma and GSCs. It also provided a helpful biomarker for diagnosis and prognostic evaluation of glioma and may be applied to molecular targeted therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CircCHAF1A is upregulated in glioblastomas tissues and correlated with the progression and poor prognosis.
Fig. 2: CircCHAF1A regulates the proliferation of GSCs in vitro.
Fig. 3: HOXC8 is upregulated in glioblastomas tissues and correlated with the progression and poor prognosis.
Fig. 4: HOXC8 promotes the proliferation of GSCs in vitro via MDM2-dependent p53 inhibition.
Fig. 5: CircCHAF1A acts as a miRNA sponge of miR-211-5p and upregulates HOXC8 expression.
Fig. 6: CircCHAF1A promotes the proliferation of GSCs via HOXC8.
Fig. 7: FMR1 bound to and upregulate circCHAF1A expression in GSCs, while HOXC8 transcriptionally regulates U2AF2 expression.
Fig. 8: The U2AF2/ circCHAF1A /miR-211-5p/HOXC8 feedback loop promoted GSCs tumorigenesis in vivo.

Similar content being viewed by others

References

  1. Lapointe S, Perry A, Butowski NA. Primary brain tumours in adults. Lancet. 2018;392:432–46.

    Article  PubMed  Google Scholar 

  2. Quail DF, Joyce JA. The microenvironmental landscape of brain tumors. Cancer Cell. 2017;31:326–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sadik A, Somarribas Patterson LF, Ozturk S, Mohapatra SR, Panitz V, Secker PF, et al. IL4I1 is a metabolic immune checkpoint that activates the AHR and promotes tumor progression. Cell. 2020;182:1252–70. e34.

    Article  CAS  PubMed  Google Scholar 

  4. Suva ML, Tirosh I. The glioma stem cell model in the era of single-cell genomics. Cancer Cell. 2020;37:630–6.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang L, He X, Liu X, Zhang F, Huang LF, Potter AS, et al. Single-cell transcriptomics in medulloblastoma reveals tumor-initiating progenitors and oncogenic cascades during tumorigenesis and relapse. Cancer Cell. 2019;36:302–18. e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 2018;71:428–42.

    Article  CAS  PubMed  Google Scholar 

  7. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8.

    Article  CAS  PubMed  Google Scholar 

  8. Yu J, Xu QG, Wang ZG, Yang Y, Zhang L, Ma JZ, et al. Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma. J Hepatol. 2018;68:1214–27.

    Article  CAS  PubMed  Google Scholar 

  9. Sun J, Li B, Shu C, Ma Q, Wang J. Functions and clinical significance of circular RNAs in glioma. Mol Cancer. 2020;19:34–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. He J, Huang Z, He M, Liao J, Zhang Q, Wang S, et al. Circular RNA MAPK4 (circ-MAPK4) inhibits cell apoptosis via MAPK signaling pathway by sponging miR-125a-3p in gliomas. Mol Cancer. 2020;19:17–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arnold A, Imada EL, Zhang ML, Edward DP, Marchionni L, Rodriguez FJ. Differential gene methylation and expression of HOX transcription factor family in orbitofacial neurofibroma. Acta Neuropathol Commun. 2020;8:62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gong C, Zou J, Zhang M, Zhang J, Xu S, Zhu S, et al. Upregulation of MGP by HOXC8 promotes the proliferation, migration, and EMT processes of triple-negative breast cancer. Mol Carcinog. 2019;58:1863–75.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang J, Yang M, Li D, Zhu S, Zou J, Xu S, et al. Homeobox C8 is a transcriptional repressor of E-cadherin gene expression in non-small cell lung cancer. Int J Biochem Cell Biol. 2019;114:105557.

    Article  CAS  PubMed  Google Scholar 

  14. Shen LY, Zhou T, Du YB, Shi Q, Chen KN. Targeting HOX/PBX dimer formation as a potential therapeutic option in esophageal squamous cell carcinoma. Cancer Sci. 2019;110:1735–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liang T, Wang X, Li P, Cao Y, Feng E, You G. HOXC8: a predictive glioma biomarker that induces epithelia-mesenchymal transition. Chin Neurosurg J. 2018;4:24.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ebert MS, Sharp PA. MicroRNA sponges: progress and possibilities. Rna. 2010;16:2043–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luo Z, Rong Z, Zhang J, Zhu Z, Yu Z, Li T, et al. Circular RNA circCCDC9 acts as a miR-6792-3p sponge to suppress the progression of gastric cancer through regulating CAV1 expression. Mol Cancer. 2020;19:86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang Y, Zhou J, Zhao J, Zhang H, Li L, Li H, et al. The U2AF2 /circRNA ARF1/miR-342-3p/ISL2 feedback loop regulates angiogenesis in glioma stem cells. J Exp Clin Cancer Res. 2020;39:182–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shao L, He Q, Liu Y, Liu X, Zheng J, Ma J, et al. UPF1 regulates the malignant biological behaviors of glioblastoma cells via enhancing the stability of Linc-00313. Cell Death Dis. 2019;10:629.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yang X, Qu S, Wang L, Zhang H, Yang Z, Wang J, et al. PTBP3 splicing factor promotes hepatocellular carcinoma by destroying the splicing balance of NEAT1 and pre-miR-612. Oncogene. 2018;37:6399–413.

    Article  CAS  PubMed  Google Scholar 

  21. Kosti A, de Araujo PR, Li WQ, Guardia GDA, Chiou J, Yi C, et al. The RNA-binding protein SERBP1 functions as a novel oncogenic factor in glioblastoma by bridging cancer metabolism and epigenetic regulation. Genome Biol. 2020;21:195–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hsu PJ, Shi H, Zhu AC, Lu Z, Miller N, Edens BM, et al. The RNA-binding protein FMRP facilitates the nuclear export of N (6)-methyladenosine-containing mRNAs. J Biol Chem. 2019;294:19889–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zalfa F, Panasiti V, Carotti S, Zingariello M, Perrone G, Sancillo L, et al. The fragile X mental retardation protein regulates tumor invasiveness-related pathways in melanoma cells. Cell Death Dis. 2017;8:e3169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xing Z, Zeng M, Hu H, Zhang H, Hao Z, Long Y, et al. Fragile X mental retardation protein promotes astrocytoma proliferation via the MEK/ERK signaling pathway. Oncotarget. 2016;7:75394–406.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wu P, Gao Y, Shen S, Xue Y, Liu X, Ruan X, et al. KHDRBS3 regulates the permeability of blood-tumor barrier via cDENND4C/miR-577 axis. Cell Death Dis. 2019;10:536–51.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zheng L, Liang X, Li S, Li T, Shang W, Ma L, et al. CHAF1A interacts with TCF4 to promote gastric carcinogenesis via upregulation of c-MYC and CCND1 expression. EBioMedicine. 2018;38:69–78.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu T, Wei J, Jiang C, Wang C, Zhang X, Du Y, et al. CHAF1A, the largest subunit of the chromatin assembly factor 1 complex, regulates the growth of H1299 human non-small cell lung cancer cells by inducing G0/G1 cell cycle arrest. Exp Ther Med. 2017;14:4681–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Xia D, Yang X, Liu W, Shen F, Pan J, Lin Y, et al. Over-expression of CHAF1A in Epithelial Ovarian Cancer can promote cell proliferation and inhibit cell apoptosis. Biochem Biophys Res Commun. 2017;486:191–7.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu Z, Yu Z, Rong Z, Luo Z, Zhang J, Qiu Z, et al. The novel GINS4 axis promotes gastric cancer growth and progression by activating Rac1 and CDC42. Theranostics. 2019;9:8294–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang J, Lv J, Zhang F, Che H, Liao Q, Huang W, et al. MicroRNA-211 expression is down-regulated and associated with poor prognosis in human glioma. J Neurooncol. 2017;133:553–9.

    Article  CAS  PubMed  Google Scholar 

  31. Liu X, Shen S, Zhu L, Su R, Zheng J, Ruan X, et al. SRSF10 inhibits biogenesis of circ-ATXN1 to regulate glioma angiogenesis via miR-526b-3p/MMP2 pathway. J Exp Clin Cancer Res. 2020;39:121.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Paz I, Kosti I, Ares M Jr, Cline M, Mandel-Gutfreund Y. RBPmap: a web server for mapping binding sites of RNA-binding proteins. Nucleic Acids Res. 2014;42:W361–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA. 1976;73:3852–6.

    Article  CAS  PubMed  Google Scholar 

  34. Liu H, Zhang M, Xu S, Zhang J, Zou J, Yang C, et al. HOXC8 promotes proliferation and migration through transcriptional up-regulation of TGFβ1 in non-small cell lung cancer. Oncogenesis. 2018;7:1.

    Article  PubMed  PubMed Central  Google Scholar 

  35. He Q, Zhao L, Liu Y, Liu X, Zheng J, Yu H, et al. circ-SHKBP1 regulates the angiogenesis of U87 glioma-exposed endothelial cells through miR-544a/FOXP1 and miR-379/FOXP2 pathways. Mol Ther Nucleic Acids. 2018;10:331–48.

    Article  CAS  PubMed  Google Scholar 

  36. Zeng Y, Du WW, Wu Y, Yang Z, Awan FM, Li X, et al. A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics. 2017;7:3842–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 2018;110:304–15.

    Article  CAS  Google Scholar 

  38. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–8.

    Article  CAS  PubMed  Google Scholar 

  39. Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function. J Neurosci Res. 2020;98:87–97.

    Article  CAS  PubMed  Google Scholar 

  40. Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160:1125–34.

    Article  CAS  PubMed  Google Scholar 

  41. Lyu D, Huang S. The emerging role and clinical implication of human exonic circular RNA. RNA Biol. 2017;14:1000–6.

    Article  PubMed  Google Scholar 

  42. He Z, Ruan X, Liu X, Zheng J, Liu Y, Liu L, et al. FUS/circ_002136/miR-138-5p/SOX13 feedback loop regulates angiogenesis in Glioma. J Exp Clin Cancer Res. 2019;38:65.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lin J, Ding S, Xie C, Yi R, Wu Z, Luo J, et al. MicroRNA-4476 promotes glioma progression through a miR-4476/APC/β-catenin/c-Jun positive feedback loop. Cell Death Dis. 2020;11:269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Z, Shi Y, Ying C, Jiang Y, Hu J. Hypoxia-induced PLOD1 overexpression contributes to the malignant phenotype of glioblastoma via NF-kappaB signaling. Oncogene. 2021;40:1458–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jiang Y, Zhou J, Zhao J, Hou D, Zhang H, Li L, et al. MiR-18a-downregulated RORA inhibits the proliferation and tumorigenesis of glioma using the TNF-alpha-mediated NF-kappaB signaling pathway. EBioMed. 2020;52:102651.

    Article  Google Scholar 

  46. Jiang Y, Zhou J, Luo P, Gao H, Ma Y, Chen YS, et al. Prosaposin promotes the proliferation and tumorigenesis of glioma through toll-like receptor 4 (TLR4)-mediated NF-kappaB signaling pathway. EBioMed. 2018;37:78–90.

    Article  Google Scholar 

  47. Jiang Y, Zhou J, Zou D, Hou D, Zhang H, Zhao J, et al. Overexpression of Limb-Bud and Heart (LBH) promotes angiogenesis in human glioma via VEGFA-mediated ERK signalling under hypoxia. EBioMed. 2019;48:36–48.

    Article  Google Scholar 

  48. Jiang Y, Han S, Cheng W, Wang Z, Wu A. NFAT1-regulated IL6 signalling contributes to aggressive phenotypes of glioma. Cell Commun Signal. 2017;15:54–65.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hu Y, Smyth GK. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods. 2009;347:70–8.

    Article  CAS  PubMed  Google Scholar 

  50. Huang T, Kim CK, Alvarez AA, Pangeni RP, Wan X, Song X, et al. MST4 phosphorylation of ATG4B regulates autophagic activity, tumorigenicity, and radioresistance in glioblastoma. Cancer Cell. 2017;32:840–55. e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Zhitao Jing at the Department of Neurosurgery, The First Affiliated Hospital of China Medical University for molecular experimental technical support. This work was supported by the National Natural Science Foundation of China (81900544), Key disciplines-B neurosurgery of Shanghai Tenth People’s Hospital (DS04! 02! 18014), and the Shanghai Sailing Program (No. 19YF1439000, No. 21YF1449900).

Author information

Authors and Affiliations

Authors

Contributions

LG conceived and designed the study; YJ, ZLW, and CTY performed the experiments and collected the data; TZ, YJ, and JFH performed bioinformatics analysis and analyzed it. YJ, ZLW, and LG interpreted the results and wrote the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Liang Gao.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Wang, Z., Ying, C. et al. FMR1/circCHAF1A/miR-211-5p/HOXC8 feedback loop regulates proliferation and tumorigenesis via MDM2-dependent p53 signaling in GSCs. Oncogene 40, 4094–4110 (2021). https://doi.org/10.1038/s41388-021-01833-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01833-2

This article is cited by

Search

Quick links