Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ING2 tumor suppressive protein translocates into mitochondria and is involved in cellular metabolism homeostasis

Abstract

ING2 (Inhibitor of Growth 2) is a tumor suppressor gene that has been implicated in critical biological functions (cell-cycle regulation, replicative senescence, DNA repair and DNA replication), most of which are recognized hallmarks of tumorigenesis occurring in the cell nucleus. As its close homolog ING1 has been recently observed in the mitochondrial compartment, we hypothesized that ING2 could also translocate into the mitochondria and be involved in new biological functions. In the present study, we demonstrate that ING2 is imported in the inner mitochondrial fraction in a redox-sensitive manner in human cells and that this mechanism is modulated by 14-3-3η protein expression. Remarkably, ING2 is necessary to maintain mitochondrial ultrastructure integrity without interfering with mitochondrial networks or polarization. We observed an interaction between ING2 and mtDNA under basal conditions. This interaction appears to be mediated by TFAM, a critical regulator of mtDNA integrity. The loss of mitochondrial ING2 does not impair mtDNA repair, replication or transcription but leads to a decrease in mitochondrial ROS production, suggesting a detrimental impact on OXPHOS activity. We finally show using multiple models that ING2 is involved in mitochondrial respiration and that its loss confers a protection against mitochondrial respiratory chain inhibition in vitro. Consequently, we propose a new tumor suppressor role for ING2 protein in the mitochondria as a metabolic shift gatekeeper during tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ING2 is located in the inner mitochondrial compartment in human cell lines.
Fig. 2: Mitochondrial import of ING2 is redox-sensitive and is impaired upon inhibition of mitochondrial disulfide relay system.
Fig. 3: ING2 down-regulation impairs mitochondrial ultrastructure without interferring with the mitochondrial network.
Fig. 4: ING2 protein interacts with transcription factor A mitochondrial (TFAM) and is involved in the control of mitochondrial ROS production.
Fig. 5: ING2 loss impairs mitochondrial oxidative phosphorylation and decreases the cytotoxic effect of mitochondrial respiratory chain inhibitors.

Similar content being viewed by others

References

  1. Wallace DC. Mitochondria and cancer. Nat Rev Cancer. 2012;12:685–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vyas S, Zaganjor E, Haigis MC. Mitochondria and Cancer. Cell. 2016;166:555–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zong W-X, Rabinowitz JD, White E. Mitochondria and Cancer. Mol Cell. 2016;61:667–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  5. Sullivan LB, Chandel NS Mitochondrial reactive oxygen species and cancer. Cancer Metab. 2014; 2. https://doi.org/10.1186/2049-3002-2-17.

  6. Satoh H, Moriguchi T, Takai J, Ebina M, Yamamoto M. Nrf2 prevents initiation but accelerates progression through the Kras signaling pathway during lung carcinogenesis. Cancer Res. 2013;73:4158–68.

    Article  CAS  PubMed  Google Scholar 

  7. Neumann CA, Krause DS, Carman CV, Das S, Dubey DP, Abraham JL, et al. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature. 2003;424:561–5.

    Article  CAS  PubMed  Google Scholar 

  8. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM. The antioxidant function of the p53 tumor suppressor. Nat Med. 2005;11:1306–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shiao YH, Resau JH, Nagashima K, Anderson LM, Ramakrishna G. The von Hippel-Lindau tumor suppressor targets to mitochondria. Cancer Res. 2000;60:2816–9.

    CAS  PubMed  Google Scholar 

  10. Hilgendorf KI, Leshchiner ES, Nedelcu S, Maynard MA, Calo E, Ianari A, et al. The retinoblastoma protein induces apoptosis directly at the mitochondria. Genes Dev. 2013;27:1003–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dantas A, Al Shueili B, Yang Y, Nabbi A, Fink D, Riabowol K Biological functions of the ING proteins. Cancers. 2019; 11. https://doi.org/10.3390/cancers11111817.

  12. Doyon Y, Cayrou C, Ullah M, Landry A-J, Côté V, Selleck W, et al. ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell. 2006;21:51–64.

    Article  CAS  PubMed  Google Scholar 

  13. Larrieu D, Ythier D, Brambilla C, Pedeux R. ING2 controls the G1 to S-phase transition by regulating p21 expression. Cell Cycle Georget Tex. 2010;9:3984–90.

    Article  CAS  Google Scholar 

  14. Pedeux R, Sengupta S, Shen JC, Demidov ON, Saito S, Onogi H, et al. ING2 regulates the onset of replicative senescence by induction of p300-dependent p53 acetylation. Mol Cell Biol. 2005;25:6639–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Archambeau J, Blondel A, Pedeux R Focus-ING on DNA integrity: implication of ING proteins in cell cycle regulation and DNA repair modulation. Cancers. 2019; 12. https://doi.org/10.3390/cancers12010058.

  16. Larrieu D, Ythier D, Binet R, Brambilla C, Brambilla E, Sengupta S, et al. ING2 controls the progression of DNA replication forks to maintain genome stability. EMBO Rep. 2009;10:1168–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guérillon C, Larrieu D, Pedeux R. ING1 and ING2: multifaceted tumor suppressor genes. Cell Mol Life Sci. 2013;70:3753–72.

    Article  PubMed  Google Scholar 

  18. Bose P, Thakur S, Thalappilly S, Ahn BY, Satpathy S, Feng X, et al. ING1 induces apoptosis through direct effects at the mitochondria. Cell Death Dis. 2013;4:e788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Steinmetz LM, Scharfe C, Deutschbauer AM, Mokranjac D, Herman ZS, Jones T, et al. Systematic screen for human disease genes in yeast. Nat Genet. 2002;31:400–4.

    Article  CAS  PubMed  Google Scholar 

  20. Ma Y, Yan R, Wan Q, Lv B, Yang Y, Lv T et al. Inhibitor of growth 2 regulates the high glucose-induced cell cycle arrest and epithelial-to-mesenchymal transition in renal proximal tubular cells. J Physiol Biochem. 2020. https://doi.org/10.1007/s13105-020-00743-3.

  21. van Donselaar E, Posthuma G, Zeuschner D, Humbel BM, Slot JW. Immunogold labeling of cryosections from high-pressure frozen cells. Traffic Cph Den. 2007;8:471–85.

    Article  Google Scholar 

  22. Gabriel K, Milenkovic D, Chacinska A, Müller J, Guiard B, Pfanner N, et al. Novel mitochondrial intermembrane space proteins as substrates of the MIA import pathway. J Mol Biol. 2007;365:612–20.

    Article  CAS  PubMed  Google Scholar 

  23. Zhuang J, Wang P, Huang X, Chen X, Kang J-G, Hwang PM. Mitochondrial disulfide relay mediates translocation of p53 and partitions its subcellular activity. Proc Natl Acad Sci USA. 2013;110:17356–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Backes S, Herrmann JM. Protein translocation into the intermembrane space and matrix of mitochondria: mechanisms and driving forces. Front Mol Biosci. 2017;4:83.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vögtle F-N, Burkhart JM, Rao S, Gerbeth C, Hinrichs J, Martinou J-C, et al. Intermembrane space proteome of yeast mitochondria. Mol Cell Proteom MCP. 2012;11:1840–52.

    Article  Google Scholar 

  26. He GHY, Helbing CC, Wagner MJ, Sensen CW, Riabowol K. Phylogenetic analysis of the ING family of PHD finger proteins. Mol Biol Evol. 2005;22:104–16.

    Article  CAS  PubMed  Google Scholar 

  27. Dabir DV, Hasson SA, Setoguchi K, Johnson ME, Wongkongkathep P, Douglas CJ, et al. A small molecule inhibitor of redox-regulated protein translocation into mitochondria. Dev Cell. 2013;25:81–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abdrabou A, Brandwein D, Wang Z Differential subcellular distribution and translocation of seven 14-3-3 isoforms in response to EGF and during the cell cycle. Int J Mol Sci. 2020;21. https://doi.org/10.3390/ijms21010318.

  29. Gong W, Russell M, Suzuki K, Riabowol K. Subcellular targeting of p33ING1b by phosphorylation-dependent 14-3-3 binding regulates p21WAF1 expression. Mol Cell Biol. 2006;26:2947–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Valente AJ, Maddalena LA, Robb EL, Moradi F, Stuart JA. A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture. Acta Histochem. 2017;119:315–26.

    Article  CAS  PubMed  Google Scholar 

  31. Szczepanowska J, Zabłocki K, Duszyński J. Influence of a mitochondrial genetic defect on capacitative calcium entry and mitochondrial organization in the osteosarcoma cells. FEBS Lett. 2004;578:316–22.

    Article  CAS  PubMed  Google Scholar 

  32. Marusich MF, Robinson BH, Taanman JW, Kim SJ, Schillace R, Smith JL, et al. Expression of mtDNA and nDNA encoded respiratory chain proteins in chemically and genetically-derived Rho0 human fibroblasts: a comparison of subunit proteins in normal fibroblasts treated with ethidium bromide and fibroblasts from a patient with mtDNA depletion syndrome. Biochim Biophys Acta. 1997;1362:145–59.

    Article  CAS  PubMed  Google Scholar 

  33. Shi X, Hong T, Walter KL, Ewalt M, Michishita E, Hung T, et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature. 2006;442:96–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaufman BA, Durisic N, Mativetsky JM, Costantino S, Hancock MA, Grutter P, et al. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol Biol Cell. 2007;18:3225–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature. 2006;440:637–43.

    Article  CAS  PubMed  Google Scholar 

  36. Achanta G, Sasaki R, Feng L, Carew JS, Lu W, Pelicano H, et al. Novel role of p53 in maintaining mitochondrial genetic stability through interaction with DNA Pol gamma. EMBO J. 2005;24:3482–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang YE, Marinov GK, Wold BJ, Chan DC. Genome-wide analysis reveals coating of the mitochondrial genome by TFAM. PloS One. 2013;8:e74513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mouche A, Archambeau J, Ricordel C, Chaillot L, Bigot N, Guillaudeux T, et al. ING3 is required for ATM signaling and DNA repair in response to DNA double strand breaks. Cell Death Differ. 2019;26:2344–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weckbecker D, Longen S, Riemer J, Herrmann JM. Atp23 biogenesis reveals a chaperone-like folding activity of Mia40 in the IMS of mitochondria. EMBO J. 2012;31:4348–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Longen S, Woellhaf MW, Petrungaro C, Riemer J, Herrmann JM. The disulfide relay of the intermembrane space oxidizes the ribosomal subunit mrp10 on its transit into the mitochondrial matrix. Dev Cell. 2014;28:30–42.

    Article  CAS  PubMed  Google Scholar 

  41. Edwards R, Gerlich S, Tokatlidis K. The biogenesis of mitochondrial intermembrane space proteins. Biol Chem. 2020;401:737–47.

    Article  CAS  PubMed  Google Scholar 

  42. Lee SR, Han J. Mitochondrial nucleoid: shield and switch of the mitochondrial genome. Oxid Med Cell Longev 2017;2017:e8060949.

    Article  Google Scholar 

  43. Gozani O, Karuman P, Jones DR, Ivanov D, Cha J, Lugovskoy AA, et al. The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell. 2003;114:99–111.

    Article  CAS  PubMed  Google Scholar 

  44. Rosivatz E, Woscholski R. Removal or masking of phosphatidylinositol(4,5)bisphosphate from the outer mitochondrial membrane causes mitochondrial fragmentation. Cell Signal. 2011;23:478–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dar S, Chhina J, Mert I, Chitale D, Buekers T, Kaur H, et al. Bioenergetic adaptations in chemoresistant ovarian cancer cells. Sci Rep. 2017;7:8760.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lehuédé C, Dupuy F, Rabinovitch R, Jones RG, Siegel PM. Metabolic plasticity as a determinant of tumor growth and metastasis. Cancer Res. 2016;76:5201–8.

    Article  PubMed  Google Scholar 

  47. Pile LA, Spellman PT, Katzenberger RJ, Wassarman DA. The SIN3 deacetylase complex represses genes encoding mitochondrial proteins: implications for the regulation of energy metabolism. J Biol Chem. 2003;278:37840–8.

    Article  CAS  PubMed  Google Scholar 

  48. Ythier D, Larrieu D, Binet R, Binda O, Brambilla C, Gazzeri S, et al. Sumoylation of ING2 regulates the transcription mediated by Sin3A. Oncogene. 2010;29:5946–56.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang J-T, Wang D-W, Li Q-X, Zhu Z-L, Wang M-W, Cui D-S, et al. Nuclear to cytoplasmic shift of p33(ING1b) protein from normal oral mucosa to oral squamous cell carcinoma in relation to clinicopathological variables. J Cancer Res Clin Oncol. 2008;134:421–6.

    Article  CAS  PubMed  Google Scholar 

  50. Zhu Z-L, Yan B-Y, Zhang Y, Yang Y-H, Wang Z-M, Zhang H-Z, et al. Cytoplasmic expression of p33(ING1b) is correlated with tumorigenesis and progression of human esophageal squamous cell carcinoma. Oncol Lett. 2013;5:161–6.

    Article  PubMed  Google Scholar 

  51. Wang Y, Dai DL, Martinka M, Li G. Prognostic significance of nuclear ING3 expression in human cutaneous melanoma. Clin Cancer Res. 2007;13:4111–6.

    Article  CAS  PubMed  Google Scholar 

  52. Li X, Nishida T, Noguchi A, Zheng Y, Takahashi H, Yang X, et al. Decreased nuclear expression and increased cytoplasmic expression of ING5 may be linked to tumorigenesis and progression in human head and neck squamous cell carcinoma. J Cancer Res Clin Oncol. 2010;136:1573–83.

    Article  CAS  PubMed  Google Scholar 

  53. Guérillon C, Bigot N, Pedeux R The ING tumor suppressor genes: Status in human tumors. Cancer Lett. 2013. https://doi.org/10.1016/j.canlet.2013.11.016.

  54. Pallotti F, Lenaz G. Isolation and subfractionation of mitochondria from animal cells and tissue culture lines. Methods Cell Biol. 2007;80:3–44.

    Article  CAS  PubMed  Google Scholar 

  55. Ferrè F, Clote P. DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification. Nucleic Acids Res. 2006;34:W182–W185.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Puleston D. Detection of mitochondrial mass, damage, and reactive oxygen species by flow cytometry. Cold Spring Harb Protoc. 2015;2015:pdb.prot086298.

    Article  PubMed  Google Scholar 

  57. Tokuyasu KT. A technique for ultracryotomy of cell suspensions and tissues. J Cell Biol. 1973;57:551–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nicolle O, Burel A, Griffiths G, Michaux G, Kolotuev I. Adaptation of cryo-sectioning for IEM labeling of asymmetric samples: a study using caenorhabditis elegans. Traffic Cph Den. 2015;16:893–905.

    Article  CAS  Google Scholar 

  59. Quispe-Tintaya W, White RR, Popov VN, Vijg J, Maslov AY. Fast mitochondrial DNA isolation from mammalian cells for next-generation sequencing. BioTechniques. 2013;55:133–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Furda A, Santos JH, Meyer JN, Van Houten B. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol Biol. 2014;1105:419–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S.Manié for his participation and the technical support. We thank the photonic facility of the Microscopy Rennes Imaging Center (MRic-Photonics) of Biosit, Université de Rennes 1. We thank Pr JA MacDonald and his team members as well as Pr K Riabowol (University of Calgary, Canada) for providing lentiviral vectors and technical support for the generation of the CrispR clones. AM was a recipient of a doctoral fellowship from La Ligue Contre le Cancer and Region Bretagne. C. Ricordel was a recipient of FHU Camin (CHU Rennes) doctoral followship and Nuovo-Soldati Fundation research grant. RP is supported by INSERM (Institut National de la Santé et de la Recherche Médicale). The work was supported by La Ligue Contre le Cancer (Grand Ouest), Association pour la Recherche sur le Cancer (ARC), Fondation pour la Recherche Médicale (FMR, DEQ20180339169), AIS Rennes Métropole, Biosit and Action Incitative Université de Rennes 1.

Author information

Authors and Affiliations

Authors

Contributions

CR, LC, AB, and RP conceived and designed the experiments. CR, AM, AB, AJ, LC, FJ, MT, and ABu performed the experiments. CR, LC, MT, and RP analyzed the data. RP, HL, BD, TG approved the manuscript and contributed to the financial support. CR and RP wrote the paper.

Corresponding author

Correspondence to Rémy Pedeux.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricordel, C., Chaillot, L., Blondel, A. et al. ING2 tumor suppressive protein translocates into mitochondria and is involved in cellular metabolism homeostasis. Oncogene 40, 4111–4123 (2021). https://doi.org/10.1038/s41388-021-01832-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01832-3

Search

Quick links