Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Yorkie-Cactus (IκBα)-JNK axis promotes tumor growth and progression in Drosophila

Abstract

Presence of inflammatory factors in the tumor microenvironment is well-documented yet their specific role in tumorigenesis is elusive. The core inflammatory pathways like the Toll-Like Receptor (TLR) and the Tumor Necrosis Factor (TNF) pathway are conserved in Drosophila. We induced GFP-marked epithelial tumors by expressing activated oncogenic forms of RasV12 or Yorkie (Yki3SA, mammalian YAP) in scribble deficient cells (scribRNAi, mammalian SCRIB) to study the role of inflammatory factors in tumorigenesis. Similar to RasV12scribRNAi, we found that Yki3SAscribRNAi form invasive neoplastic lethal tumors that induce a systemic inflammatory response. We identified Cactus (Cact, mammalian IκBα), the negative regulator of TLR, as a key player in tumor growth. Cact accumulates in the cytoplasm in Drosophila tumor models, similar to squamous cell carcinoma in mice models and human patients where cytoplasmic IκBα favors oncogenic transformation. Further, cact is transcriptionally upregulated in tumors, and downregulation of Cact affects tumor growth. We investigated if TLR or TNF pathway affect tumor growth through activation of Jun N-terminal Kinase (JNK) pathway and its target Matrix Metalloprotease1 (MMP1). Genetically manipulating levels of TLR components or TNF receptors showed that Cact acts upstream of JNK signaling and regulates JNK via a non-canonical mechanism during tumorigenesis. Further, Hippo coactivator Yki transcriptionally regulates cact expression, and downregulation of Yki or Cact is sufficient to cause downregulation of JNK-mediated signaling that promotes tumorigenesis. Here, we report a link between Hippo, IκBα and JNK signaling that may induce inflammation and innate immune response in tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression of oncogenic Yki (Yki3SA) in scrib mutant cells forms invasive tumors.
Fig. 2: Role of Cact in tumor progression.
Fig. 3: Effect of downregulating both TNF receptors on Tumor progression.
Fig. 4: JNK is the key regulator of tumor invasiveness.
Fig. 5: Role of Yki in stimulating Cact and promoting tumorigenesis.
Fig. 6: Model for Yki-Cact-JNK axis in tumorigenesis.

Similar content being viewed by others

References

  1. Fernandez-Medarde A, Santos E. Ras in cancer and developmental diseases. Genes Cancer. 2011;2:344–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cellurale C, Sabio G, Kennedy NJ, Das M, Barlow M, Sandy P, et al. Requirement of c-Jun NH(2)-terminal kinase for Ras-initiated tumor formation. Mol Cell Biol. 2011;31:1565–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hong X, Nguyen HT, Chen Q, Zhang R, Hagman Z, Voorhoeve PM, et al. Opposing activities of the Ras and Hippo pathways converge on regulation of YAP protein turnover. EMBO J. 2014;33:2447–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. La Marca JE, Richardson HE. Two-faced: roles of JNK signalling during tumourigenesis in the drosophila model. Front Cell Dev Biol. 2020;8:42.

    PubMed  PubMed Central  Google Scholar 

  5. Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer. Cancer Cell. 2016;29:783–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  PubMed  Google Scholar 

  7. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.

    CAS  PubMed  Google Scholar 

  8. Hoffmann JA. The immune response of Drosophila. Nature. 2003;426:33–8.

    CAS  PubMed  Google Scholar 

  9. Martinelli C, Reichhart JM. Evolution and integration of innate immune systems from fruit flies to man: lessons and questions. J Endotoxin Res. 2005;11:243–8.

    CAS  PubMed  Google Scholar 

  10. Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol. 2011;12:715–23.

    CAS  PubMed  Google Scholar 

  11. Hultmark D. Drosophila immunity: paths and patterns. Curr Opin Immunol. 2003;15:12–19.

    CAS  PubMed  Google Scholar 

  12. Valanne S, Wang JH, Ramet M. The drosophila toll signaling pathway. J Immunol. 2011;186:649–56.

    CAS  PubMed  Google Scholar 

  13. Kauppila S, Maaty WS, Chen P, Tomar RS, Eby MT, Chapo J, et al. Eiger and its receptor, Wengen, comprise a TNF-like system in Drosophila. Oncogene. 2003;22:4860–7.

    CAS  PubMed  Google Scholar 

  14. Kanda H, Igaki T, Kanuka H, Yagi T, Miura M. Wengen, a member of the Drosophila tumor necrosis factor receptor superfamily, is required for Eiger signaling. J Biol Chem. 2002;277:28372–5.

    CAS  PubMed  Google Scholar 

  15. Wang X, Lin Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharm Sin. 2008;29:1275–88.

    Google Scholar 

  16. Germani F, Bergantinos C, Johnston LA. Mosaic analysis in Drosophila. Genetics. 2018;208:473–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cordero JB, Macagno JP, Stefanatos RK, Strathdee KE, Cagan RL, Vidal M. Oncogenic Ras diverts a host TNF tumor suppressor activity into tumor promoter. Dev Cell. 2010;18:999–1011.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Igaki T, Kanda H, Yamamoto-Goto Y, Kanuka H, Kuranaga E, Aigaki T, et al. Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway. Embo J. 2002;21:3009–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ohsawa S, Sugimura K, Takino K, Xu T, Miyawaki A, Igaki T. Elimination of oncogenic neighbors by jnk-mediated engulfment in Drosophila. Dev Cell. 2011;20:315–28.

    CAS  PubMed  Google Scholar 

  20. Pagliarini RA, Xu T. A genetic screen in Drosophila for metastatic behavior. Science. 2003;302:1227–31.

    CAS  PubMed  Google Scholar 

  21. Brumby AM, Richardson HE. scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. Embo J. 2003;22:5769–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang CC, Graves HK, Moya IM, Tao C, Hamaratoglu F, Gladden AB, et al. Differential regulation of the Hippo pathway by adherens junctions and apical-basal cell polarity modules. Proc Natl Acad Sci USA. 2015;112:1785–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Waghmare I, Kango-Singh M. Loss of Cell Adhesion Increases Tumorigenic Potential of Polarity Deficient Scribble Mutant Cells. PLoS One. 2016;11:e0158081.

    PubMed  PubMed Central  Google Scholar 

  24. Uhlirova M, Bohmann D. JNK- and Fos-regulated Mmp1 expression cooperates with Ras to induce invasive tumors in Drosophila. EMBO J. 2006;25:5294–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007;8:221–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Beaucher M, Hersperger E, Page-McCaw A, Shearn A. Metastatic ability of Drosophila tumors depends on MMP activity. Dev Biol. 2007;303:625–34.

    CAS  PubMed  Google Scholar 

  27. Birembaut P, Caron Y, Adnet JJ, Foidart JM. Usefulness of basement membrane markers in tumoural pathology. J Pathol. 1985;145:283–96.

    CAS  PubMed  Google Scholar 

  28. Goulev Y, Fauny JD, Gonzalez-Marti B, Flagiello D, Silber J, Zider A. SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr Biol. 2008;18:435–41.

    CAS  PubMed  Google Scholar 

  29. Rudrapatna VA, Bangi E, Cagan RL. A Jnk-Rho-Actin remodeling positive feedback network directs Src-driven invasion. Oncogene. 2014;33:2801–6.

    CAS  PubMed  Google Scholar 

  30. Vidal M, Warner S, Read R, Cagan RL. Differing Src signaling levels have distinct outcomes in Drosophila. Cancer Res. 2007;67:10278–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Parvy JP, Yu Y, Dostalova A, Kondo S, Kurjan A, Bulet P, et al. The antimicrobial peptide defensin cooperates with tumour necrosis factor to drive tumour cell death in Drosophila. Elife. 2019;8:e45061.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ito K, Awano W, Suzuki K, Hiromi Y, Yamamoto D. The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development. 1997;124:761–71.

    CAS  PubMed  Google Scholar 

  33. Kango-Singh M, Singh A, Henry Sun Y. Eyeless collaborates with Hedgehog and Decapentaplegic signaling in Drosophila eye induction. Dev Biol. 2003;256:49–60.

    PubMed  Google Scholar 

  34. Martin-Blanco E, Gampel A, Ring J, Virdee K, Kirov N, Tolkovsky AM, et al. puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev. 1998;12:557–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Shaukat Z, Liu D, Gregory S. Sterile inflammation in Drosophila. Mediators Inflamm. 2015;2015:369286.

    PubMed  PubMed Central  Google Scholar 

  36. Bretscher AJ, Honti V, Binggeli O, Burri O, Poidevin M, Kurucz E, et al. The Nimrod transmembrane receptor Eater is required for hemocyte attachment to the sessile compartment in Drosophila melanogaster. Biol Open. 2015;4:355–63.

    PubMed  PubMed Central  Google Scholar 

  37. Tzou P, Ohresser S, Ferrandon D, Capovilla M, Reichhart JM, Lemaitre B, et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity. 2000;13:737–48.

    CAS  PubMed  Google Scholar 

  38. Muzzopappa M, Murcia L, Milan M. Feedback amplification loop drives malignant growth in epithelial tissues. Proc Natl Acad Sci USA. 2017;114:E7291–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Andersen DS, Colombani J, Palmerini V, Chakrabandhu K, Boone E, Rothlisberger M, et al. The Drosophila TNF receptor Grindelwald couples loss of cell polarity and neoplastic growth. Nature. 2015;522:482–6.

    CAS  PubMed  Google Scholar 

  40. Ma X, Chen Y, Zhang S, Xu W, Shao Y, Yang Y, et al. Rho1-Wnd signaling regulates loss-of-cell polarity-induced cell invasion in Drosophila. Oncogene. 2016;35:846–55.

    CAS  PubMed  Google Scholar 

  41. Willsey HR, Zheng X, Carlos Pastor-Pareja J, Willsey AJ, Beachy PA, Xu T. Localized JNK signaling regulates organ size during development. Elife. 2016;5:e11491.

    PubMed  PubMed Central  Google Scholar 

  42. Atkins M, Potier D, Romanelli L, Jacobs J, Mach J, Hamaratoglu F, et al. An Ectopic Network of Transcription Factors Regulated by Hippo Signaling Drives Growth and Invasion of a Malignant Tumor Model. Curr Biol. 2016;26:2101–13.

    CAS  PubMed  Google Scholar 

  43. Enomoto M, Kizawa D, Ohsawa S, Igaki T. JNK signaling is converted from anti- to pro-tumor pathway by Ras-mediated switch of Warts activity. Dev Biol. 2015;403:162–71.

    CAS  PubMed  Google Scholar 

  44. Liu B, Zheng Y, Yin F, Yu J, Silverman N, Pan D. Toll Receptor-Mediated Hippo Signaling Controls Innate Immunity in Drosophila. Cell. 2016;164:406–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tournier C. The 2 faces of JNK signaling in cancer. Genes Cancer. 2013;4:397–400.

    PubMed  PubMed Central  Google Scholar 

  46. Sun G, Irvine KD. Ajuba family proteins link JNK to Hippo signaling. Sci Signal. 2013;6:ra81.

    PubMed  Google Scholar 

  47. Snigdha K, Gangwani KS, Lapalikar GV, Singh A, Kango-Singh M. Hippo signaling in cancer: lessons from Drosophila models. Front Cell Developmental Biol (Rev). 2019;7:85.

    Google Scholar 

  48. Kapoor A, Yao W, Ying H, Hua S, Liewen A, Wang Q, et al. Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell. 2014;158:185–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang W, Nandakumar N, Shi Y, Manzano M, Smith A, Graham G, et al. Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Sci Signal. 2014;7:ra42.

    PubMed  PubMed Central  Google Scholar 

  50. Mao Y, Sun S, Irvine KD. Role and regulation of Yap in KrasG12D-induced lung cancer. Oncotarget. 2017;8:110877–89.

    PubMed  PubMed Central  Google Scholar 

  51. Uhlirova M, Jasper H, Bohmann D. Non-cell-autonomous induction of tissue overgrowth by JNK/Ras cooperation in a Drosophila tumor model. Proc Natl Acad Sci USA. 2005;102:13123–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen CL, Schroeder MC, Kango-Singh M, Tao C, Halder G. Tumor suppression by cell competition through regulation of the Hippo pathway. Proc Natl Acad Sci USA. 2012;109:484–9.

    CAS  PubMed  Google Scholar 

  53. Doggett K, Grusche FA, Richardson HE, Brumby AM. Loss of the Drosophila cell polarity regulator Scribbled promotes epithelial tissue overgrowth and cooperation with oncogenic Ras-Raf through impaired Hippo pathway signaling. BMC Dev Biol. 2011;11:57.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sun G, Irvine KD. Regulation of Hippo signaling by Jun kinase signaling during compensatory cell proliferation and regeneration, and in neoplastic tumors. Dev Biol. 2011;350:139–51.

    CAS  PubMed  Google Scholar 

  55. Igaki T, Pagliarini RA, Xu T. Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila. Curr Biol. 2006;16:1139–46.

    CAS  PubMed  Google Scholar 

  56. Ramet M, Lanot R, Zachary D, Manfruelli P. JNK signaling pathway is required for efficient wound healing in Drosophila. Dev Biol. 2002;241:145–56.

    PubMed  Google Scholar 

  57. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006;25:9–34.

    CAS  PubMed  Google Scholar 

  58. Bunker BD, Nellimoottil TT, Boileau RM, Classen AK, Bilder D. The transcriptional response to tumorigenic polarity loss in Drosophila. Elife. 2015;4:e03189.

    PubMed Central  Google Scholar 

  59. Zanconato F, Forcato M, Battilana G, Azzolin L, Quaranta E, Bodega B, et al. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol. 2015;17:1218–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kulshammer E, Mundorf J, Kilinc M, Frommolt P, Wagle P, Uhlirova M. Interplay among Drosophila transcription factors Ets21c, Fos and Ftz-F1 drives JNK-mediated tumor malignancy. Dis Model Mech. 2015;8:1279–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Patel PH, Dutta D, Edgar BA. Niche appropriation by Drosophila intestinal stem cell tumours. Nat Cell Biol. 2015;17:1182–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Oh H, Reddy BV, Irvine KD. Phosphorylation-independent repression of Yorkie in Fat-Hippo signaling. Dev Biol. 2009;335:188–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Verghese S, Waghmare I, Kwon H, Hanes K, Kango-Singh M. Scribble acts in the Drosophila fat-hippo pathway to regulate warts activity. PLoS One. 2012;7:e47173.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Morimoto K, Tamori Y. Induction and diagnosis of tumors in Drosophila imaginal disc epithelia. J Vis Exp.2017;125:612589 https://doi.org/10.3791/55901.

    Article  CAS  Google Scholar 

  65. Arefin B, Kunc M, Krautz R, Theopold U. The immune phenotype of three drosophila leukemia models. G3 (Bethesda). 2017;7:2139–49.

    CAS  Google Scholar 

  66. Hauling T, Krautz R, Markus R, Volkenhoff A, Kucerova L, Theopold U. A Drosophila immune response against Ras-induced overgrowth. Biol Open. 2014;3:250–60.

    PubMed  PubMed Central  Google Scholar 

  67. Parisi F, Stefanatos RK, Strathdee K, Yu Y, Vidal M. Transformed epithelia trigger non-tissue-autonomous tumor suppressor response by adipocytes via activation of Toll and Eiger/TNF signaling. Cell Rep. 2014;6:855–67.

    CAS  PubMed  Google Scholar 

  68. Villegas SN, Gombos R, García-López L, Gutiérrez-Pérez I, García-Castillo J, Vallejo DM, et al. PI3K/Akt Cooperates with Oncogenic Notch by Inducing Nitric Oxide-Dependent Inflammation. Cell Rep. 2018;22:2541–9.

    CAS  PubMed  Google Scholar 

  69. Mulero MC, Ferres-Marco D, Islam A, Margalef P, Pecoraro M, Toll A, et al. Chromatin-bound IkappaBalpha regulates a subset of polycomb target genes in differentiation and cancer. Cancer Cell. 2013;24:151–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Roth S, Hiromi Y, Godt D, Nusslein-Volhard C. cactus, a maternal gene required for proper formation of the dorsoventral morphogen gradient in Drosophila embryos. Development. 1991;112:371–88.

    CAS  PubMed  Google Scholar 

  71. Bergmann A, Stein D, Geisler R, Hagenmaier S, Schmid B, Fernandez N, et al. A gradient of cytoplasmic Cactus degradation establishes the nuclear localization gradient of the dorsal morphogen in Drosophila. Mech Dev. 1996;60:109–23.

    CAS  PubMed  Google Scholar 

  72. Tremmel DM, Resad S, Little CJ, Wesley CS. Notch and PKC are involved in formation of the lateral region of the dorso-ventral axis in Drosophila embryos. PLoS One. 2013;8:e67789.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Geisler R, Bergmann A, Hiromi Y, Nusslein-Volhard C. cactus, a gene involved in dorsoventral pattern formation of Drosophila, is related to the I kappa B gene family of vertebrates. Cell. 1992;71:613–21.

    CAS  PubMed  Google Scholar 

  74. Dominguez M. Oncogenic programmes and Notch activity: an ‘organized crime'? Semin Cell Dev Biol. 2014;28:78–85.

    CAS  PubMed  Google Scholar 

  75. Ma X, Chen Y, Xu W, Wu N, Li M, Cao Y, et al. Impaired Hippo signaling promotes Rho1-JNK-dependent growth. Proc Natl Acad Sci USA. 2015;112:1065–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Byun PK, Zhang C, Yao B, Wardwell-Ozgo J, Terry D, Jin P, et al. The taiman transcriptional coactivator engages toll signals to promote apoptosis and intertissue invasion in Drosophila. Curr Biol. 2019;29:2790–2800 e2794.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mishra-Gorur K, Li D, Ma X, Yarman Y, Xue L, Xu T. Spz/Toll-6 signal guides organotropic metastasis in Drosophila. Dis Model Mech. 2019;12:dmm039727.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Dajee M, Lazarov M, Zhang JY, Cai T, Green CL, Russell AJ, et al. NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature. 2003;421:639–43.

    CAS  PubMed  Google Scholar 

  79. van Hogerlinden M, Rozell BL, Ahrlund-Richter L, Toftgard R. Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/nuclear factor-kappaB signaling. Cancer Res. 1999;59:3299–303.

    PubMed  Google Scholar 

  80. Kango-Singh M, Nolo R, Tao C, Verstreken P, Hiesinger PR, Bellen HJ, et al. Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development. 2002;129:5719–30.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments that have helped make this manuscript better. We thank Dr. A. Bergmann, Dr. Stephen Cohen, the Bloomington Drosophila Stock Center, and the Drosophila Studies Hybridoma Bank for flies and antibodies. KS acknowledges the Teaching Assistantship and Graduate Student Summer Fellowship from the Graduate Program of University of Dayton. AS is supported by funding from Start-up research funds, the Schuellein Endowed Chair in Biology from the University of Dayton, and NIH 1R15 GM124654-1. MKS is supported by start-up research funds from the University of Dayton, and a subaward from NIH grant R01CA183991 (PI Nakano).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhuri Kango-Singh.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snigdha, K., Singh, A. & Kango-Singh, M. Yorkie-Cactus (IκBα)-JNK axis promotes tumor growth and progression in Drosophila. Oncogene 40, 4124–4136 (2021). https://doi.org/10.1038/s41388-021-01831-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01831-4

Search

Quick links