Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FOXK2 transcriptionally activating VEGFA induces apatinib resistance in anaplastic thyroid cancer through VEGFA/VEGFR1 pathway

Abstract

Anaplastic thyroid carcinoma (ATC) is a rare and extremely aggressive type of thyroid cancer, and the potential mechanisms involved in ATC progression remains unclarified. In this study, we found that forkhead box K2 (FOXK2) was upregulated in ATC tissues, and the expression of FOXK2 was associated with tumor size. Evidenced by RNA-seq and Chromatin immunoprecipitation (ChIP)-seq assays, FOXK2 positively regulated VEGF and VEGFR signaling network, among which only VEGFA could be noticed in both RNA-seq and ChIP-seq results. ChIP, dual-luciferase reporter system and functional experiments further confirmed that FOXK2 promoted angiogenesis by inducing the transcription of VEGFA. On VEGFR2 blockage by specific targeting agent, such as Apatinib, FOXK2 could rapidly trigger therapeutic resistance. Mechanical analyses revealed that VEGFA transcriptionally induced by FOXK2 could bind to VEGFR1 as a compensation for VEGFR2 blockage, which promoted angiogenesis by activating ERK, PI3K/AKT and P38/MAPK signaling in human umbilical vein endothelial cells (HUVECs). Synergic effect on anti-angiogenesis could be observed when VEGFR1 suppressor AF321 was included in VEGFR2 inhibition system, which clarified the pivot role of FOXK2 in VEGFR2 targeting therapy resistance. More importantly, the binding of VEGFA to VEGFR1 could further promoter FOXK2-mediated VEGFA transcription, which consequently constituted a positive feedback loop. Therefore, the novel loop VEGFA/VEGFR1/FOXK2 functioned importantly in resistance to VEGFR2 targeting therapy in FOXK2+ ATCs. Altogether, FOXK2 plays critical roles in ATC angiogenesis and VEGFR2 blockage resistance by inducing VEGFA transcription. FOXK2 represents a potentially new therapeutic strategy and biomarker for anti-angiogenic therapy against ATC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FOXK2 is upregulated in ATC.
Fig. 2: FOXK2-induced proliferation and angiogenesis via VEGFA in ATC in vitro.
Fig. 3: FOXK2 transcriptionally activates VEGFA and leads to increased secretion of VEGFA from ATC cells.
Fig. 4: Ectopic overexpression of FOXK2 increases apatinib resistance in ATC cells through VEGFA.
Fig. 5: The reciprocal feedback between FOXK2 and VEGFA/VEGFR1 to induce apatinib resistance.
Fig. 6: FOXK2 overexpression increases angiogenesis and apatinib resistance via VEGFA/VEGFR1 in vivo.
Fig. 7: FOXK2 expression is positively correlated with VEGFA levels in ATC tissues.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–24.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    Article  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.

    Article  PubMed  Google Scholar 

  4. Molinaro E, Romei C, Biagini A, Sabini E, Agate L, Mazzeo S, et al. Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies. Nat Rev. Endocrinol. 2017;13:644–60.

    Article  CAS  PubMed  Google Scholar 

  5. Kebebew E, Greenspan FS, Clark OH, Woeber KA, McMillan A. Anaplastic thyroid carcinoma. Treatment outcome and prognostic factors. Cancer. 2005;103:1330–5.

    Article  PubMed  Google Scholar 

  6. Smallridge RC, Copland JA. Anaplastic thyroid carcinoma: pathogenesis and emerging therapies. Clin Oncol. 2010;22:486–97.

    Article  CAS  Google Scholar 

  7. Lu W, Ke H, Qianshan D, Zhen W, Guoan X, Honggang Y. Apatinib has anti-tumor effects and induces autophagy in colon cancer cells. Iran J Basic Med Sci. 2017;20:990–5.

    PubMed  PubMed Central  Google Scholar 

  8. Fang Z, Gong C, Yu S, Zhou W, Hassan W, Li H, et al. NFYB-induced high expression of E2F1 contributes to oxaliplatin resistance in colorectal cancer via the enhancement of CHK1 signaling. Cancer Lett. 2018;415:58–72.

    Article  CAS  PubMed  Google Scholar 

  9. Hu X, Zhang J, Xu B, Jiang Z, Ragaz J, Tong Z, et al. Multicenter phase II study of apatinib, a novel VEGFR inhibitor in heavily pretreated patients with metastatic triple-negative breast cancer. Int J Cancer. 2014;135:1961–9.

    Article  CAS  PubMed  Google Scholar 

  10. Jin Z, Cheng X, Feng H, Kuang J, Yang W, Peng C, et al. Apatinib inhibits angiogenesis via suppressing Akt/GSK3beta/ANG signaling pathway in anaplastic thyroid cancer. Cell Physiol Biochem: Int J Exp Cell Physiol, Biochem Pharmacol. 2017;44:1471–84.

    Article  CAS  Google Scholar 

  11. Zhang X, Wang C, Lin Y. Pilot dose comparison of apatinib in Chinese patients with progressive radioiodine-refractory differentiated thyroid cancer. J Clin Endocrinol Metab. 2018;103:3640–6.

    Article  PubMed  Google Scholar 

  12. Feng H, Cheng X, Kuang J, Chen L, Yuen S, Shi M, et al. Apatinib-induced protective autophagy and apoptosis through the AKT-mTOR pathway in anaplastic thyroid cancer. Cell death Dis. 2018;9:1030.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu Y, Ding W, Ge H, Ponnusamy M, Wang Q, Hao X, et al. FOXK transcription factors: Regulation and critical role in cancer. Cancer Lett. 2019;458:1–12.

    Article  CAS  PubMed  Google Scholar 

  14. Du F, Qiao C, Li X, Chen Z, Liu H, Wu S, et al. Forkhead box K2 promotes human colorectal cancer metastasis by upregulating ZEB1 and EGFR. Theranostics. 2019;9:3879–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qian Y, Xia S, Feng Z. Sox9 mediated transcriptional activation of FOXK2 is critical for colorectal cancer cells proliferation. Biochem Biophys Res. Commun. 2017;483:475–81.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang F, Ma X, Li H, Zhang Y, Li X, Chen L, et al. FOXK2 suppresses the malignant phenotype and induces apoptosis through inhibition of EGFR in clear-cell renal cell carcinoma. Int J Cancer. 2018;142:2543–57.

    Article  CAS  PubMed  Google Scholar 

  17. Nestal de Moraes G, Ji Z, Fan LY, Yao S, Zona S, Sharrocks AD, et al. SUMOylation modulates FOXK2-mediated paclitaxel sensitivity in breast cancer cells. Oncogenesis. 2018;7:29.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nestal de Moraes G, Carneiro LDT, Maia RC, Lam EW, Sharrocks AD. FOXK2 transcription factor and its emerging roles in cancer. Cancers. 2019;11. https://doi.org/10.3390/cancers11030393.

  19. Shan L, Zhou X, Liu X, Wang Y, Su D, Hou Y, et al. FOXK2 elicits massive transcription repression and suppresses the hypoxic response and breast cancer carcinogenesis. Cancer Cell. 2016;30:708–22.

    Article  CAS  PubMed  Google Scholar 

  20. Wang S, Xiao Z, Hong Z, Jiao H, Zhu S, Zhao Y, et al. FOXF1 promotes angiogenesis and accelerates bevacizumab resistance in colorectal cancer by transcriptionally activating VEGFA. Cancer Lett. 2018;439:78–90.

    Article  CAS  PubMed  Google Scholar 

  21. Scott LJ. Apatinib: a review in advanced gastric cancer and other advanced cancers. Drugs. 2018;78:747–58.

    Article  CAS  PubMed  Google Scholar 

  22. Tian S, Quan H, Xie C, Guo H, Lu F, Xu Y, et al. YN968D1 is a novel and selective inhibitor of vascular endothelial growth factor receptor-2 tyrosine kinase with potent activity in vitro and in vivo. Cancer Sci. 2011;102:1374–80.

    Article  CAS  PubMed  Google Scholar 

  23. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.

    Article  CAS  PubMed  Google Scholar 

  24. Shi Z, Liu J, Yu X, Huang J, Shen S, Zhang Y, et al. Loss of FOXF2 expression predicts poor prognosis in hepatocellular carcinoma patients. Ann Surg Oncol. 2016;23:211–7.

    Article  PubMed  Google Scholar 

  25. Lin MF, Yang YF, Peng ZP, Zhang MF, Liang JY, Chen W, et al. FOXK2, regulted by miR-1271-5p, promotes cell growth and indicates unfavorable prognosis in hepatocellular carcinoma. Int J Biochem Cell Biol. 2017;88:155–61.

    Article  CAS  PubMed  Google Scholar 

  26. Rajabi S, Dehghan MH, Dastmalchi R, Jalali, Mashayekhi F, Salami S, et al. The roles and role-players in thyroid cancer angiogenesis. Endocr J. 2019;66:277–93.

    Article  CAS  PubMed  Google Scholar 

  27. Wang D, Wang H, Liu C, Mu X, Cheng S. Hyperglycemia inhibition of endothelial miR-140-3p mediates angiogenic dysfunction in diabetes mellitus. J Diabetes Complications. 2019;33:374–82.

    Article  PubMed  Google Scholar 

  28. Sun T, Wang H, Li Q, Qian Z, Shen C. Forkhead box protein k1 recruits TET1 to act as a tumor suppressor and is associated with MRI detection. Jpn J Clin Oncol. 2016;46:209–21.

    Article  PubMed  Google Scholar 

  29. El Atat O, Fakih A, El-Sibai M. RHOG activates RAC1 through CDC42 leading to tube formation in vascular endothelial cells. Cells.2019;8. https://doi.org/10.3390/cells8020171.

  30. Xue JM, Astere M, Zhong MX, Lin H, Shen J, Zhu YX. Efficacy and safety of apatinib treatment for gastric cancer, hepatocellular carcinoma and non-small cell lung cancer: a meta-analysis. Onco Targets Ther. 2018;11:6119–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Scott LJ. Correction to: apatinib: a review in advanced gastric cancer and other advanced cancers. Drugs. 2018;78:9.

    Google Scholar 

  32. Roviello G, Ravelli A, Polom K, Petrioli R, Marano L, Marrelli D, et al. Apatinib: a novel receptor tyrosine kinase inhibitor for the treatment of gastric cancer. Cancer Lett. 2016;372:187–91.

    Article  CAS  PubMed  Google Scholar 

  33. Hamdollah Zadeh MA, Amin EM, Hoareau-Aveilla C, Domingo E, Symonds KE, Ye X, et al. Alternative splicing of TIA-1 in human colon cancer regulates VEGF isoform expression, angiogenesis, tumour growth and bevacizumab resistance. Mol Oncol. 2015;9:167–78.

    Article  CAS  PubMed  Google Scholar 

  34. Mesange P, Poindessous V, Sabbah M, Escargueil AE, de Gramont A, Larsen AK. Intrinsic bevacizumab resistance is associated with prolonged activation of autocrine VEGF signaling and hypoxia tolerance in colorectal cancer cells and can be overcome by nintedanib, a small molecule angiokinase inhibitor. Oncotarget. 2014;5:4709–21.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nestal de Moraes G, Khongkow P, Gong C, Yao S, Gomes AR, Ji Z, et al. Forkhead box K2 modulates epirubicin and paclitaxel sensitivity through FOXO3a in breast cancer. Oncogenesis. 2015;4:e167.

    Article  CAS  PubMed  Google Scholar 

  36. Liu M, Wang X, Li H, Xu L, Jing L, Jiang P, et al. The effect of apatinib combined with chemotherapy or targeted therapy on non-small cell lung cancer in vitro and vivo. Thorac Cancer. 2019;10:1868–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Taylor SC, Posch A. The design of a quantitative western blot experiment. Biomed Res. Int. 2014;2014:361590.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Guo Y, Kluppel M, Tang H, Tan S, Zhang P, Chen Z. Lentivirus-mediated transfection of chondroitinase ABC gene without the bacterial leader sequence enables long-term secretion of functional chondroitinase ABC in human bone marrow stromal cells. Biotechnol Lett. 2016;38:893–900.

    Article  CAS  PubMed  Google Scholar 

  39. Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, et al. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis. 2018;21:425–532.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ramos-Vara JA. Technical aspects of immunohistochemistry. Vet Pathol. 2005;42:405–26.

    Article  CAS  PubMed  Google Scholar 

  41. Xu Z, Zhu C, Chen C, Zong Y, Feng H, Liu D, et al. CCL19 suppresses angiogenesis through promoting miR-206 and inhibiting Met/ERK/Elk-1/HIF-1alpha/VEGF-A pathway in colorectal cancer. Cell Death Dis. 2018;9:974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bayless KJ, Kwak HI, Su SC. Investigating endothelial invasion and sprouting behavior in three-dimensional collagen matrices. Nat Protoc. 2009;4:1888–98.

    Article  CAS  PubMed  Google Scholar 

  43. Abbey CA, Bayless KJ. Matrix density alters zyxin phosphorylation, which limits peripheral process formation and extension in endothelial cells invading 3D collagen matrices. Matrix Biol. 2014;38:36–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by the National Natural Science Foundation of China, 82072948 (WQ); National Natural Science Foundation of China, 82003169 (HF); National Natural Science Foundation of China, 82002475 (XC) and Shanghai Sailing Program, 20YF1427700(XC).

Author information

Authors and Affiliations

Authors

Contributions

JK, WQ, and XC designed and analyzed experimental data. HF, ZJ, JL, LZ, and QZ performed the experiments. HF, ZY, JK, and JY prepared figures. All authors wrote, read, and approved the final manuscript.

Corresponding authors

Correspondence to Jie Kuang, Xi Cheng or Weihua Qiu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

All procedures of human and mouse experiments were approved by Ethics Committee of Shanghai Ruijin Hospital affiliated to Shanghai JiaoTong University, School of Medicine.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, H., Jin, Z., Liang, J. et al. FOXK2 transcriptionally activating VEGFA induces apatinib resistance in anaplastic thyroid cancer through VEGFA/VEGFR1 pathway. Oncogene 40, 6115–6129 (2021). https://doi.org/10.1038/s41388-021-01830-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01830-5

This article is cited by

Search

Quick links