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Abstract
5-Fluorouracil (5-FU)-based chemotherapy is the first-line treatment for colorectal cancer (CRC) but is hampered by
chemoresistance. Despite its impact on patient survival, the mechanism underlying chemoresistance against 5-FU remains
poorly understood. Here, we identified serine hydroxymethyltransferase-2 (SHMT2) as a critical regulator of 5-FU
chemoresistance in CRC. SHMT2 inhibits autophagy by binding cytosolic p53 instead of metabolism. SHMT2 prevents
cytosolic p53 degradation by inhibiting the binding of p53 and HDM2. Under 5-FU treatment, SHMT2 depletion promotes
autophagy and inhibits apoptosis. Autophagy inhibitors decrease low SHMT2-induced 5-FU resistance in vitro and in vivo.
Finally, the lethality of 5-FU treatment to CRC cells was enhanced by treatment with the autophagy inhibitor chloroquine in
patient-derived and CRC cell xenograft models. Taken together, our findings indicate that autophagy induced by low
SHMT2 levels mediates 5-FU resistance in CRC. These results reveal the SHMT2–p53 interaction as a novel therapeutic
target and provide a potential opportunity to reduce chemoresistance.

Introduction

Colorectal cancer (CRC) is the third leading cause of cancer
mortality worldwide due to its metastatic properties and
resistance to current treatments [1]. 5-Fluorouracil (5-FU)-
based adjuvant chemotherapy is a widely accepted systemic
therapeutic option for CRC patients; however, there is an
urgent need to better understand the underlying
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chemoresistance mechanism of CRC to this treatment and
identify tumor cell-specific therapeutic targets for drug dis-
covery or “repositioning” of known therapies [2, 3].

Autophagy, a catabolic process, is thought to buffer
metabolic stress, thereby promoting cell survival [4, 5]. In
the context of cancer, autophagy plays a puzzling role,
serving as a tumor suppressor during the initial stages but
later protecting tumor cells from chemo- and radio-
resistance, hypoxia and the immune defense system [6–11].
Various cellular stressors, including the tumor suppressor
p53, can stimulate autophagy [4]. On the other hand,
pharmacological interference and the knockout or knock-
down of p53 can also induce autophagy [12, 13]. Therefore,
p53 has a dual effect on autophagy. Cytosolic but not
nuclear p53 is responsible for inhibiting autophagy [12, 13].
However, despite the critical role of cytosolic p53 in
autophagy, the upstream signals controlling this protein
remain unknown. In addition, the mechanism by which
cytosolic p53 influences chemoresistance through autop-
hagy requires exploration.

Because of the rapid proliferation of CRC cells, moderate
serine amounts must be converted to glycine to support
nucleotide biosynthesis and proliferation [14–19]. Serine
hydroxymethyltransferase 2 (SHMT2) plays a regulatory
role in the conversion of serine to glycine [20, 21]. SHMT2
is upregulated in cancers to support tumor cell proliferation
[22–25]. It is required for glioma cell survival and renders
these cells sensitive to inhibition of the glycine cleavage
system [18]. SHMT2 is, therefore, a potential oncogene
promoting colorectal carcinogenesis [23, 26]. SHMT2 can
be deacetylated by SIRT3 and SIRT5 at Lys 95 and 280,
respectively, increasing enzymatic activity and driving can-
cer cell proliferation [26, 27]. In addition, SHMT2 functions
as a component of the BRISC-SHMT2 complex to deubi-
quitinate type 1 interferon (IFN) receptor chain 1 (IFNAR1)
and HIV-1 Tat in the cytoplasm [28, 29]. Thus, SHMT2 not
only functions as a methyltransferase but also plays a role in
protein degradation, implying that its role in oncotherapy is
complicated and requires further investigation.

In this study, we found via Gene Expression Omnibus
(GEO) and TCGA database analysis that SHMT2 is tightly
related to CRC progression [30, 31]. Strikingly, CRC
patient samples with lower levels of SHMT2 exhibited
greater 5-FU resistance than those with higher levels of
SHMT2. We further found that SHMT2 binds to cytosolic
p53 and suppresses its degradation, which in turn inhibits
autophagy. Consistent with this result, the autophagy
inhibitor chloroquine (CQ) increased the 5-FU chemo-
sensitivity of CRC samples with low levels of SHMT2. Our
study thus reveals a new function of SHMT2 in autophagy
through the maintenance of cytosolic p53 stability instead
of metabolism and suggests a potential anticancer che-
motherapeutic strategy.

Materials and methods

Patients, cohorts, and tissue microarrays

Fifty paired fresh-frozen samples of primary colorectal
carcinoma (CRC) and adjacent normal colon tissues were
collected from the Department of Surgery at Shanghai
General Hospital, School of Medicine, Shanghai Jiaotong
University. A total of 378 paraffin-embedded samples of
stage II–III primary colorectal carcinoma were collected
between 2003 and 2011. Tissue microarrays were con-
structed from these samples. All the samples were obtained
during surgery. This research was approved by the Ethics
Committee of Shanghai General Hospital (2016KY069),
and written informed consent was obtained from all patients
before enrollment in the study.

Nude mouse xenograft models

CRC xenografts were established in 5-week-old female
BALB/c nude mice purchased from the Institute of Zool-
ogy, Chinese Academy of Sciences, Shanghai. Tumor-
bearing and the calculation of tumor volumes were per-
formed as previously described [32]. Briefly, SHMT2-sh
and control cells (3 × 106) were injected subcutaneously into
the flanks of nude mice. 5-FU (20 mg/kg/day) was injected
intraperitoneally weekly for 3 weeks. CQ (10 mg/kg) was
administered as a daily oral gavage. All animal procedures
were conducted in accordance with the Hospital Animal
Care guidelines of Shanghai General Hospital. All efforts
were made to minimize animal suffering.

Establishment of the PDX model

Fresh tissues from 4 CRC patients (two with high SHMT2
expression and two with low SHMT2 expression) under-
going surgical treatment were obtained and implanted
subcutaneously into the flanks of female NOD-Prkdcscid

Il2rgtm1/Bcgen (B-NSG) mice (Biocytogen) with a 10-
gauge trocar needle. Once established, solid tumor xeno-
grafts were serially passaged using the same technique. A
primary tissue sample was anonymized and obtained by the
Shanghai General Hospital (Shanghai, China) Institutional
Review Board.

Cell lines, plasmids, and reagents

The human cell lines HCT116, SW480 and 293 T were
purchased from the American Type Culture Collection
(ATCC, Manassas, VA, USA). All the cell lines were
maintained in DMEM supplemented with 10% FBS (Gibco,
USA) at 37°C, 95% humidity and 5% CO2. The SHMT2,
HDM2, p53 and p53 mutant (NLS- and NES-) sequences
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[13] were cloned into the pCDNA 3.0 vector or the pLVX-
IRES lentiviral vector by standard cloning methods. To
construct mCherry–GFP–LC3 reporter, the mCherry
sequence and the cDNA sequence of LC3B were into the 5ʹ
and 3ʹ regions of EGFP, respectively. The sequences of the
pLKO.1-shRNAs targeting SHMT2 double-stranded oligo-
nucleotides were as follows: 5ʹCCGGACAAGTACTCG
GAGGGTTATCCTCGAGGATAACCCTCCGAGTACTT
GTTTTTTG (SHMT2-sh-1), 5ʹCCGGTAGGGCAAGAGC
CAGGTATAGCTCGAGTAGGGCAA-GAGCCAGGTAT
AGTTTTTG (SHMT2-sh-2), and 5ʹCCGGGTCTGACGTC
AAGCGGAT-ATCCTCGAGGATATCCGCTTGACGTC
AGACTTTTTTG (SHMT2-sh-3).

The sequence of the shRNA targeting p53 was as follow:
5ʹCCGGCGGCGCACAGAGGAAGAGAATCTCGAGAT
TCTCTTCCTCTGTGC-GCCGTTTTTG (p53-Sh) (all tar-
get sequences are underlined). 3-MA, CQ and sodium
formate (71539, Sigma) were obtained from Sigma. Anti-
bodies specific for LC3 (ABC929, Sigma; ab48394,
Abcam), SHMT2 (NBP1-80755, Novus Biologicals, USA),
p62 (p0017, Sigma), p53 (DO-1, Santa Cruz; ab32389,
Abcam) and actin (A1978, Sigma) were used.

CRISPR/Cas9 knockout cell lines

The sgRNA sequences targeting SHMT2 were designed
with CRISPR Designer (http://crispr.mit.edu/). The guide
sequences targeting human SHMT2 were 5ʹ- CACCGCG
AGTACTTGTTGTTCAGAC-3ʹ and 5ʹ-CACCGGTTGCT
GTGCTGAGC-CCGAA-3ʹ.

Immunohistochemistry

Immunohistochemistry was performed as previously
described [32]. The intensity and extent of staining were
evaluated independently by two pathologists blinded to the
patient outcomes. The staining score was calculated by
multiplying the intensity score by the extent score. The
patients with CRC were stratified by the final staining
score into two groups: 0–8, lower expression; 9–12, higher
expression.

Western blot analysis and immunofluorescence

Cell lysate preparation, western blot analysis, and Immu-
nofluorescence were performed as previously described
[33, 34].

Transmission electron microscopy

Cells were fixed with 2.5% glutaraldehyde containing
0.1 mol/L sodium cacodylate and treated with 1% osmium
tetroxide. After dehydration, samples were embedded in

Araldite and were then cut into thin sections that were
stained with uranyl acetate and lead citrate. Digital images
were obtained with a Philips CM-120 transmission elec-
tron microscope at 60 kV. Autophagosomes (APs) can be
identified through their contents and double bilayers with
narrow electron-lucent clefts. Autolysosomes (ALs) can
be identified by their partially degraded, electron-dense
contents.

Proximity ligation assay (PLA)

Cells were permeabilized and treated with primary anti-
bodies. Duolink® In Situ PLA probes and Duolink® In Situ
detection reagents (Cat. No: DUO92101) were obtained
from Sigma-Aldrich (Munich, Germany). The PLA assay
was performed according to the manufacturer’s instructions.
Cells were incubated with PLA probes for 1 h. Cells were
then incubated with the ligation mix for 30 min, and the
Cy3 amplification mix was applied to the slides for 100 min
at 37°C. The samples were mounted using Duolink® In Situ
Mounting Medium with DAPI.

mCherry-GFP-LC3 reporter assay

0.5 μg of the mCherry-GFP-LC3B plasmid and 1.5 μg of
pLKO.1-shRNA plasmids expressing Scramble-sh or
SHMT2-sh were cotransfected into HCT116 cells. The cells
were incubated in mock medium or medium containing
100 μM CQ for 8 h and were then fixed with 4% paraf-
ormaldehyde (Sigma-Aldrich). The cells were subsequently
stained with DAPI, and the formation of intracellular puncta
was monitored with a Leica TCS SP8 microscope.

Sodium formate treatment and metabolic rescue
experiments

Cells were treated with sodium formate (Sigma–Aldrich) at
the indicated concentrations and collected as previously
described after 12 h for western blotting. WT SHMT2
plasmids and plasmids carrying the sequences for the
SHMT2 K95Q [26], K280Q and E98L/Y106F [35] cata-
lytically inactive mutants were transfected into HCT116
SHMT-sh cells (clone-2) and collected as previously
described after 24 h for western blotting.

Quantification of GFP–LC3 puncta

Cellular autophagic activities were assessed by determining
the formation of GFP-LC3 aggregates in HCT116 cells and
were quantified by counting the percentage of cells exhi-
biting the accumulation of GFP-LC3 in dots or vacuoles
(GFP-LC3vac). Puncta were counted in a minimum of 100
cells per sample in three replicates. Cells exhibiting a
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mostly diffusive distribution of GFP-LC3 in the cytoplasm
and nucleus were considered nonautophagic, whereas cells
showing several intense punctate GFP-LC3 aggregates but
no nuclear GFP-LC3 were classified as autophagic. Each
GFP-LC3 stained sample was evaluated by two independent
investigators.

GC–MS analysis

The GC–MS experiments were conducted as previously
described [36]. In total, six biological replicates per group
were subjected to GC/MS analysis. Metabolites with vari-
able influence on projection values greater than 1.0 and P <
0.05 were included.

Statistical analysis

Student’s two-tailed t test and GraphPad Prism were used
for statistical analysis. A P < 0.05 was considered to indi-
cate a significant difference.

Results

Analysis of CRC via high-throughput database
screening reveals that SHMT2 is pivotal in CRC

Currently, the GEO (Gene Expression Omnibus) database
harbors the most comprehensive datasets for the gene
expression profiles of all cancer types. To identify key
genes that might significantly contribute to the prognosis of
CRC, we first analyzed differentially expressed genes
(DEGs) between CRC and adjacent normal tissues (control)
using a machine learning approach based on five algorithms
(diagonal linear discriminant analysis, Bayesian CCP,
nearest neighbor, nearest centroid and support vector
machines). A total of 66 genes were identified using the
GSE9348 datasets [37] as the training cohort, which con-
tained 72 CRC and 12 control cases (Fig. S1A–B). These
genes were further validated in another two independent
cohorts (GSE44076 [38] and GSE44861 [39]) containing
154 CRC and 153 control cases (Fig. S1C–E). In addition to
some well-established oncogenes (e.g., MYC and MET),
SHMT2 emerged among many DEGs that might potentially
contribute to prognosis. Next, we analyzed the prognostic
effect of these 66 genes by a Cox regression model in 532
tissue samples with prognostic information (GSE14333
[40], GSE17536 [41], and GSE29621 [42]) and applied the
random forest test to further characterize the most valuable
factors that could predict CRC prognosis (Fig. S1F–G).
Five core genes that contributed most to the risk score were
identified as survival predictors of CRC: risk score=
−0.370 × CPM− 0.122 × GUCA2B+ 0.332 ×MET+

0.088 × SCN9A+ 0.827 × SHMT2. Among these genes,
SHMT2, which encodes one of the most prominent
enzymes in cancer metabolism, has been little studied in
CRC, which inspired us to investigate further.

SHMT2 interacts with cytosolic p53

Although SHMT2 is an essential enzyme in one-carbon
metabolism, it is found in complex with many other important
proteins, including BRISC [28, 29]. Herein, a proteomic
analysis was carried out to identify potential SHMT2-
interacting partners through IP/MS. As shown in Figs. 1A,
B, p53 was identified as a novel SHMT2 binding protein,
along with KIAA0157, a known SHMT2 binding protein
(Fig. 1B). In HCT116 cells, SHMT2-Flag coimmunopreci-
pitated with p53 (Fig. 1C). Furthermore, we separated
endogenous nuclear and cytosolic p53 and found that
SHMT2 seemed to predominantly interact with the cytosolic
fraction of endogenous p53 in HCT116 cells (Fig. 1D).
Tumor-suppressing p53 is upregulated in response to DNA
damage, oncogene activation, or exposure to other stresses
[43]. Nuclear p53 acts as a transcription factor that tran-
scriptionally activates genes involved in apoptosis and
numerous other processes [43], whereas cytosolic p53 has
been found to inhibit autophagy and trigger apoptosis
[12, 13, 44]. As SHMT2 is localized mainly in both mito-
chondria and the cytoplasm [28], we constructed a wild-type
(WT) p53, a cytosol-only p53 (NLS-) mutant with a disrupted
nuclear localization sequence (NLS), and a nuclear-retained
p53 (NES-) mutant with a disrupted nuclear export signal [13]
to assess which subpopulation of cellular p53 interacted with
SHMT2. The results of coimmunoprecipitation experiments
showed that SHMT2 interacted with cytosolic p53 (NLS-) but
not nuclear p53 (NES-) (Fig. 1E). Moreover, the immuno-
fluorescence results showed that SHMT2 partially colocalized
with cytosolic p53 in cells cotransfected with SHMT2, WT
p53, nuclear p53 (NES-), or cytosolic p53 (NLS-) [13]
(Fig. 1F). Consistent with the finding that p53 is also loca-
lized in the cytoplasm [44], the colocalization of endogenous
SHMT2 with cytosolic p53 was also observed (Fig. 1G). A
proximity ligation assay (PLA) was performed, and the data
provided further evidence that these proteins colocalized with
each other (Fig. 1H). Collectively, these results indicated that
SHMT2 interacts with cytosolic p53.

Depletion of SHMT2 induces autophagy

Cytosolic p53 mediates the inhibition of autophagy, as dele-
tion, depletion, or pharmacological inhibition of p53 induces
autophagy in mouse, human and nematode cells [13]. Having
verified the binding of SHMT2 to cytosolic p53, we then
examined autophagic flux in cells with endogenous SHMT2,
SHMT2 knockdown (SHMT2-sh), or SHMT2 knockout
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(SHMT2-KO). During AP maturation, cytoplasmic LC3 is
conjugated to phosphatidylethanolamine (PE) and transported
to the surface of the phagophore, increasing the ratio of

PE-LC3 (LC3-II) versus cytoplasmic LC3 (LC3-I) [5, 45].
Upon autophagy activation, P62, an adaptor for autophagic
substrates and a key regulator in autophagy [46], is also
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degraded, rendering it another commonly used reporter for
cellular autophagy activity. As shown in Fig. 2A–C, the
[LC3-II]/[LC3-I] ratio was markedly increased and p62 levels

were decreased in SHMT2-sh and SHMT2-KO cells com-
pared to control HCT116 cells, which clearly suggested that
cellular autophagy was activated upon SHMT2 deficiency.
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Moreover, overexpression of SHMT2 seemed to efficiently
suppress cellular autophagy triggered by glucose depri-
vation (Fig. 2D). To visualize the autophagic vesicles
directly, we examined them by both GFP-LC3 puncta and
transmission electron microscopy (TEM). Consistently,
SHMT2 knockdown increased the number of LC3 puncta
per cell (Fig. 2E–F). TEM analysis of autophagy in
SHMT2-sh cells revealed that SHMT2 knockdown led to a
marked increase in the number of autophagic vacuoles
(AVs) in vitro (Fig. 2G–H). Consistent with these findings,
enhanced autophagy was also observed in SW480 cells
(Fig. 2I) and was inhibited by CQ (Fig. 2J). To examine
autophagic flux in detail, we also monitored APs and ALs
via the mCherry–GFP–LC3 reporter, which labeled APs
and ALs with yellow and red fluorescence, respectively.
SHMT2 knockdown increased the numbers of both APs
and ALs in HCT116 cells, and CQ treatment increased the
number of APs but decreased the number of ALs in
SHMT2-sh cells (Fig. 2K–M). The above data indicate that
autophagy is enhanced in SHMT2-low cells.

Depletion of SHMT2 induces autophagy via
degradation of cytosolic p53 in response to 5-FU
treatment

Typically, SHMT2 functions to regulate one-carbon meta-
bolism [47, 48]. We thus analyzed the metabolites in cells

with or without SHMT2 knockdown and found that the
metabolites that changed the most after SHMT2 knockdown
were involved in arginine and proline metabolism; alanine,
aspartate and dicarboxylate metabolism; pyrimidine meta-
bolism; and valine, leucine and isoleucine biosynthesis
(Fig. S2A). It has been established that cellular autophagy
activities can be modulated when cell metabolism is altered
[49–51]. However, as shown in Fig. S2B, treatment with
sodium formate (a one-carbon metabolite mimic) did not
suppress the cellular autophagy activated by SHMT2 defi-
ciency (in SHMT2-KO cells), suggesting that the changes in
one-carbon metabolites might not directly influence cellular
autophagy. In other words, this result helped us decouple
the enzyme activity of SHMT2 and its autophagy-
suppressing function. Even stronger evidence came from
the fact that enzymatically dead [26, 35] could efficiently
suppress autophagy activated upon SHMT2 knockout
(Fig. S2C). Altogether, we believe it is safe to conclude that
the effects of SHMT2 on autophagy are not dependent on
its typical function in one-carbon metabolism.

Next, we evaluated whether SHMT2 regulates autophagy
via cytosolic p53. SHMT2 overexpression affected neither
the LC3-II/I ratio nor the p62 level in the absence of p53
(Fig. 3A). Similar results were also observed in p53 knock-
down cells (Fig. 3B). To further assess whether SHMT2-
mediated autophagy inhibition is p53 dependent, we restored
p53 expression in SHMT2-sh cells and found that WT p53
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Fig. 2 Depletion of SHMT2 induces autophagy. A The effect of
SHMT2 on autophagy. To establish stable cell lines, HCT116 cells
were infected with Scramble-sh (Control) or SHMT2 knockdown
(SHMT2-sh-1, -sh-2, or -sh-3) lentivirus for 72 h and selected with
puromycin (1 mg/ml). The protein levels of endogenous SHMT2, p62,
LC3, and β-actin (as the internal standard) were examined by western
blotting. B Identification of SHMT2-KO monoclonal HCT116 cell
lines. C The protein levels of endogenous SHMT2, p62, LC3, and
β-actin were evaluated in control and SHMT2-KO HCT116 cells.
D The effect of SHMT2 on autophagy under glucose deprivation (GD)
was assessed. E GFP-LC3 puncta were induced in SHMT2 knock-
down cells. Control and SHMT2-sh stable HCT116 cell lines were
transfected with the GFP-LC3 plasmid and cultured in complete
medium for 24 h. Scale bar, 10 μm. F The percentage of cells exhi-
biting accumulation of GFP-LC3 in puncta (GFP-LC3vac) is shown
(mean ± s.d., n= 3; **P < 0.01). G Ultrastructural evidence of

autophagic vacuolization induced by SHMT2 depletion. H The num-
bers of autophagosomes (APs) and autolysosomes (ALs) were deter-
mined in at least 50 cells in three independent experiments (mean ± s.
d.; **P < 0.01). I Effect of SHMT2 on LC3 maturation in SW480
cells. To establish stable cell lines, SW480 cells were infected with
Scramble-sh (Control) or SHMT2 knockdown (SHMT2-sh-1 or -sh-2)
lentivirus for 72 h and selected with puromycin (1 mg/ml). The protein
levels of endogenous SHMT2, p62, LC3, and β-actin (as the internal
standard) were examined by western blotting. J Autophagy levels were
increased in SHMT2-sh cells and prevented by the autophagy inhibitor
chloroquine (CQ). K–M Representative images and quantification of
HCT116 cells expressing mCherry-GFP-LC3B and the indicated
shRNA. APs and ALs were identified as yellow and red puncta,
respectively. The numbers of puncta are shown as the mean ± s.e.m.
values. Statistical significance was determined by Poisson regression.
ns nonsignificant, *P < 0.05, ***P < 0.001.
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and cytosolic p53 (NLS-) but not nuclear p53 (NES-) reversed
the induction of autophagy resulting from SHMT2 depletion
(Fig. 3C). Similarly, WT p53 and cytosolic p53 decreased the

number of LC3 puncta per cell and the level of GFP–LC3 in
SHMT2-sh cells (Fig. 3D–E). Collectively, these results
indicate that SHMT2 inhibits autophagy via cytosolic p53.
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Induction of autophagy has been reported to stimulate
proteasome-mediated degradation of p53 through a pathway
dependent on the E3 ubiquitin ligase HDM2 [13, 43].
Therefore, we investigated whether SHMT2 interferes with
p53–HDM2 binding. The results of a coimmunoprecipita-
tion competition assay showed that SHMT2 prevents cyto-
solic p53 from interacting with HDM2 (Fig. 3F).
SHMT2 stabilized cytosolic p53 but not nuclear p53;
moreover, MG132 counteracted the SHMT2-sh-induced
degradation of cytosolic p53 (Fig. 3G). After 5-FU treat-
ment, SHMT2–p53 binding was decreased (Fig. 3H), and
p53–HDM2 binding was increased (Fig. 3I). 5-FU markedly
accelerated cytosolic p53 protein degradation, while SHMT2
overexpression and MG132 treatment delayed cytosolic p53
protein degradation (Fig. 3J). Thus, overexpression of
SHMT2 promoted the protein accumulation of endogenous
cytosolic p53 (Fig. 3K). Taken together, these results indi-
cate that SHMT2 stabilizes p53 by preventing its HDM2-
mediated degradation in response to 5-FU treatment.

Inhibition of autophagy induced by low SHMT2
expression sensitizes CRC cells to 5-FU treatment

Given that cytosolic p53 triggers apoptosis and inhibits
autophagy [44], we further analyzed the balance between
apoptosis and autophagy in SHMT2-ov, SHMT2-sh, and
SHMT2-KO cells after 5-FU treatment. In SHMT2-ov
cells, the levels of cleaved caspase-3 and poly (ADP-
ribose) polymerase (PARP) were increased and that of
LC3-II was decreased, while the opposite pattern was
observed in SHMT2-sh and SHMT2-KO cells, indicating
that SHMT2 promotes apoptosis and inhibits autophagy in
response to 5-FU treatment (Fig. 4A–B). Autophagy
induction prevents tumor cells from undergoing apoptosis
and subsequently leads to chemoresistance [10]. The
autophagy inhibitors 3-methyladenine (3-MA) and CQ
were then used to sensitize cells to 5-FU–based che-
motherapy [9, 52]. Compared with control and SHMT2-ov
cells, SHMT2-sh cells showed 5-FU resistance, which was
counteracted by 3-MA and CQ (Fig. 4C).

Next, we investigated whether CQ increases sensitivity
to 5-FU treatment in SHMT2-sh xenograft tumors. Control
and SHMT2-sh HCT116 cells were injected subcutaneously
into nude mice above the left and right hind legs, respec-
tively. Tumor growth was markedly inhibited in SHMT2-
sh–injected mice after CQ and 5-FU treatment compared
with CQ treatment alone (Fig. 4D–F). 5-FU treatment and
the combined treatment of CQ and 5-FU caused an ~15%
reduction in the body mass of nude mice, while CQ treat-
ment alone caused a 10% reduction in body mass, indicat-
ing that the combined therapy did not further potentiate this
marker of host toxicity (Fig. S3). Collectively, our findings
show that autophagy induced by low SHMT2 expression
leads to 5-FU resistance and that inhibition of autophagy
sensitizes SHMT2-low CRC cells to 5-FU treatment.

5-FU resistance is related to low SHMT2 expression
and autophagy in human CRC

SHMT2 is a potential cancer driver gene and promotes col-
orectal carcinogenesis [23, 26]; moreover, it is related to 5-FU
resistance in CRC cells and xenograft tumors. Thus, we fur-
ther studied the role of SHMT2 in CRC therapy. q-PCR
analysis of 50 paired CRC tissues and adjacent normal tissues
showed that SHMT2 expression was significantly upregulated
in CRC tissues compared with normal tissues (Fig. S4A).
Moreover, we retrieved SHMT2 mRNA expression data from
the GEO and TCGA databases and found that the expression
level of SHMT2 was significantly higher in CRC tissues than
in normal mucosa (Fig. S4B and Fig. 5A).

Next, we selected CRC patients with TNM stage II or III
disease (n= 378) to explore the function of SHMT2 in
response to 5-FU–based adjuvant chemotherapy (Table S1).

Fig. 3 SHMT2 depletion induces autophagy via degradation of
cytosolic p53 in response to 5-FU treatment. A–C Effect of SHMT2
and p53 on LC3 maturation. The protein levels of SHMT2, p53, p62,
LC3, and β-actin (as the internal standard) were assessed by western
blotting using anti-Flag and anti-p53, anti-p62, anti-LC3, and anti-
β-actin antibodies, respectively. A HCT116p53+/+ cells and
HCT116p53-/- cells were transfected with Flag-SHMT2 for 24 h. B
HCT116 cells were infected with Scramble-sh (Control) or p53
knockdown (Sh) lentivirus for 72 h and transfected with Flag-SHMT2
for 24 h. C Stable control and SHMT2-sh cells were transfected with
Flag-WT, nuclear (NES-) and cytosolic p53 (NLS-) plasmids for 24 h.
The protein levels of p53, SHMT2, p62, LC3, and β-actin were
assessed by western blotting using anti-Flag and anti-p53, anti-
SHMT2, anti-p62, anti-LC3, and anti-β-actin antibodies, respectively.
D GFP-LC3 puncta formation induced by SHMT2-sh or p53 mutants.
Control and SHMT2-sh stable HCT116 cell lines were transfected with
Flag-WT p53, nuclear (NES-) p53, cytosolic p53 (NLS-), or GFP-LC3
plasmids and cultured in complete medium for 24 h. Scale bar, 10 μm.
E The percentage of HCT116 and SW480 cells exhibiting accumu-
lation of GFP-LC3 in puncta (GFP-LC3vac) is shown (mean ± s.d., n=
3; **P < 0.01). Puncta were quantified from 100 cells. F SHMT2
disrupted the binding of cytosolic p53 to HDM2. HCT116 cells
transfected with GFP-HDM2, HA-SHMT2, and Flag-cytosolic p53
(NLS-) plasmids were immunoprecipitated with FLAG-M2 beads.
Western blotting for p53, GFP, and HA was then performed.
G SHMT2 maintained the stability of cytosolic p53. Western blot
analysis of lysates of cells with stable SHMT2 overexpression and
knockdown that were transfected with Flag-WT, nuclear (NES-), and
cytosolic p53 (NLS-) plasmids and treated with the translation inhi-
bitors cycloheximide (CHX, 50 μg/ml) and MG132 (25 μM, 4 h) for
the indicated durations. H, I HCT116 cells transfected with Flag-
cytosolic p53 (NLS-), GFP-SHMT2 or GFP-HDM2 were immuno-
precipitated with FLAG-M2 beads. Western blotting for p53 and GFP
was then performed. H 5-FU disrupted the binding of cytosolic p53 to
SHMT2. I 5-FU promoted the binding of cytosolic p53 to HDM2.
J Western blot analysis of lysates of HCT116 cells transfected with
Flag-cytosolic p53 (NLS-) or SHMT2 plasmids and treated with CHX
and MG132 for the indicated durations with or without 5-FU.
K Nuclear-cytosolic separation shows that SHMT2 affects the stability
of endogenous cytosolic p53. Cyt cytosolic, Nuc nuclear.
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Immunohistochemical (IHC) staining revealed higher
expression of SHMT2 in human CRC specimens than in
normal specimens (Fig. 5B–C). However, consistent with the
complexity of colorectal tumorigenesis, 43.39% (n= 164) of
the CRC tissues exhibited low SHMT2 expression (Table
S1). To more thoroughly understand the contribution of
SHMT2 to the prognosis of patients with CRC, especially its
effect on the response to 5-FU–based adjuvant chemother-
apy, we investigated the correlation of SHMT2 expression

levels with disease-free survival (DFS) and overall survival
(OS) in CRC patients. Surprisingly, patients with SHMT2-
low CRC (SHMT2-low+chemo, n= 108; SHMT2-high
+chemo, n= 140) treated with 5-FU–based adjuvant che-
motherapy had worse DFS and OS than those with SHMT2-
high CRC (Fig. 5D). Moreover, correlation analysis revealed
significant correlations between the protein expression levels
of SHMT2 and both LC3-II and p62, indicating that autop-
hagy was induced in SHMT2-low CRC cells (Fig. 5E–F).
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Quantification of the average
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mice were included in each
group; *P < 0.05, **P < 0.01.
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Moreover, cytosolic p53 was almost undetectable in tissues
with low SHMT2 expression (Fig. 5G). Given that 43.39%
of the patients had SHMT2-low CRC, we need to explore the

mechanism underlying 5-FU resistance. These results also
imply that SHMT2 expression could be used as a therapeutic
marker for clinical 5-FU resistance.
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Taken together, these results further demonstrate that
SHMT2 upregulation not only promotes CRC progression
but also plays a vital role in mediating 5-FU-based che-
moresistance in CRC patients. Furthermore, multivariate
Cox proportional hazards analysis suggests that SHMT2 is a
new independent marker for the prognosis of CRC patients
treated with 5-FU-based chemotherapy (Tables S2, S3).

CQ sensitizes patient-derived xenografts (PDXs)
with low SHMT2 expression to 5-FU treatment

The above results showed that low SHMT2 induced 5-FU
resistance through autophagy activation. To explore the
function of autophagy inhibitors in 5-FU therapy, we
established a xenograft mouse model in which four CRC
patient-derived tissues (two with high expression of
SHMT2 and two with low expression of SHMT2) were
implanted subcutaneously (Fig. 6A–B). A similar result on
autophagy levels was observed in xenograft tumors and
the abovementioned experiments (Fig. 6A). As shown in
Fig. 6C, tumor growth was markedly inhibited in mice
bearing SHMT2-low xenografts that received combination
therapy with CQ and 5-FU compared to their counterparts
receiving 5-FU monotherapy (Fig. 6C–E). These results
indicate that the combination of CQ and 5-FU markedly
inhibited tumor growth in mice bearing SHMT2-low
tumors. The expression of SHMT2 is negatively related to
autophagy (Fig. 6F) and is not altered in tumors during drug
treatment (Fig. S5). Collectively, these findings show that
CQ, as an autophagy inhibitor, sensitizes xenografts with
low SHMT2 expression to 5-FU treatment (Fig. 6G).

Discussion

We screened 66 differentially expressed genes associated
with CRC progression in 224 colon cancer tissues and 165
adjacent normal tissues from three GEO data sets and found
that SHMT2 is important in CRC metabolism. SHMT2,

responsible for the conversion of serine to glycine, supports
cancer cell proliferation in various cancers [18, 21, 53].
SHMT2 is upregulated in CRC and plays a vital role in
colorectal carcinogenesis [23, 27]. Consistent with the
genetic diversity of tumors, 43.39% of CRC tumors were
found to have low expression of SHMT2. However, patients
with SHMT2-low CRC tumors exhibited 5-FU chemoresis-
tance and poor prognosis. Further analysis revealed that low
SHMT2 induced autophagy and subsequently triggered 5-FU
resistance. Via MS, we identified cytosolic p53 as a SHMT2
binding protein and found that SHMT2 inhibited autophagy
by stabilizing cytosolic p53. Depletion of SHMT2 promoted
autophagy and inhibited apoptosis after 5-FU treatment.
Inhibition of autophagy induced by low SHMT2 expression
sensitized CRC cells to 5-FU treatment in vivo and in vitro.
Finally, we enhanced the lethality of 5-FU to CRC cells
through treatment with the autophagy inhibitor CQ in a
PDX model. These findings are essential for understanding
the response to 5-FU chemotherapy in patients with SHMT2-
low CRC.

Autophagy plays opposing and context-dependent roles
in cancer, and the therapeutic targeting of autophagy in
cancer is sometimes viewed as controversial [6]. In our
study, we found that low expression of SHMT2 increased
the resistance of CRC cells to 5-FU treatment through
autophagy induction. The clinical data also verified this
finding. In vivo and in vitro depletion of SHMT2 induced
5-FU resistance, while treatment with autophagy inhibitors
decreased this resistance. Thus, our study supports the
hypothesis that autophagy inhibitors are beneficial to the
response to 5-FU–based chemotherapy in CRC.

The factors inducing autophagy are complex (for
example, starvation, treatment with rapamycin and exposure
to toxins affecting the endoplasmic reticulum) [54, 55].
Inhibition of p53 led to autophagy, and cytosolic p53
repressed the enhancement of autophagy in p53–/– cells.
Some inducers of autophagy stimulate proteasome-
mediated degradation of p53 via the E3 ubiquitin ligase
HDM2. However, the factors regulating the binding of
HDM2 to p53 require exploration. Here, we found that
SHMT2 competitively bound to cytosolic p53 to exclude
HDM2 and thus inhibited autophagy. Treatment with 5-FU
increased the binding of p53 to HDM2 to induce autophagy
but decreased the binding of cytosolic p53 to SHMT2. In
summary, we verified a new autophagy regulation
mechanism involving the SHMT2–p53–HDM2 competitive
binding system and confirmed the importance of this
mechanism in mediating the response to CRC 5-FU–based
chemotherapy. Indeed, it was unlikely that the p53 depen-
dent role of SHMT2 in autophagy regulation and its sen-
sitizing effect in 5-FU treatment was only limited to CRC.
Further study is warranted to determine whether this
mechanism holds true in other tumor types.

Fig. 5 5-FU resistance is related to low SHMT2 expression and
autophagy in CRC. A Expression of SHMT2 in three GEO datasets
(GSE39582, GSE24551, and GSE21510). ***P < 0.001. B Repre-
sentative images of immunohistochemical staining for SHMT2 in
peritumor and CRC tissues. Scale bar, 50 μm. C 378 stage II–III paired
CRC tissues assessed by immunohistochemistry are shown. **P <
0.01. D Survival of patients stratified by the SHMT2 expression level.
DFS and OS of patients with stage II–III disease treated with 5-FU-
based chemotherapy stratified by the SHMT2 expression level. E, F
The protein levels of endogenous SHMT2, p62, LC3, and β-actin (as
the internal standard) were examined by western blotting in CRC
tissues. F The Spearman rank correlation test was used to evaluate
correlations between the SHMT2, p62, and LC3 expression status in
CRC tissues as determined by western blotting. G Representative
images of immunohistochemical staining. Scale bar, 50 μm.
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SHMT2 is located not only in mitochondria but also in
the cytoplasm, as shown by our data and data from other
studies [28]. SHMT2 is a tetrameric metabolic enzyme

involved in one-carbon metabolism and can also participate
in the BRISC-SHMT complex to deubiquitinate IFNAR1
and regulate interferon responses [28]. Here, we found that
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SHMT2 regulated autophagy not by controlling one-carbon
metabolism but by binding to cytosolic p53. These findings
emphasize the functional multiformity of SHMT2 and
improve the overall understanding of the function of
SHMT2 in one-carbon metabolism and autophagy.

Conclusion

Given the complexity of tumorigenesis, mechanisms
affecting chemotherapy require further exploration. Our
study showed that low expression of SHMT2 is related to
5-FU resistance in CRC, implying that SHMT2 expression
could be used as a therapeutic marker for clinical 5-FU
resistance. Investigation of the molecular mechanism
showed that SHMT2 competitively binds to cytosolic p53 to
exclude the E3 ubiquitin ligase HDM2 and SHMT2
depletion decreases the stability of cytosolic p53 to induce
autophagy, which maintains the survival of cancer cells
treated with 5-FU. These findings reveal the SHMT2–p53
interaction as a novel oncotherapeutic target and provide a
potential opportunity to reduce 5-FU resistance using
autophagy inhibitors in chemotherapy.
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