Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Loss of DLX3 tumor suppressive function promotes progression of SCC through EGFR–ERBB2 pathway

Abstract

Cutaneous squamous cell carcinoma (cSCC) ranks second in the frequency of all skin cancers. The balance between keratinocyte proliferation and differentiation is disrupted in the pathological development of cSCC. DLX3 is a homeobox transcription factor which plays pivotal roles in embryonic development and epidermal homeostasis. To investigate the impact of DLX3 expression on cSCC prognosis, we carried out clinicopathologic analysis of DLX3 expression which showed statistical correlation between tumors of higher pathologic grade and levels of DLX3 protein expression. Further, Kaplan–Meier survival curve analysis demonstrated that low DLX3 expression correlated with poor patient survival. To model the function of Dlx3 in skin tumorigenesis, a two-stage dimethylbenzanthracene (DMBA)/12-O-tetradecanoylphorbol 13-acetate (TPA) study was performed on mice genetically depleted of Dlx3 in skin epithelium (Dlx3cKO). Dlx3cKO mice developed significantly more tumors, with more rapid tumorigenesis compared to control mice. In Dlx3cKO mice treated only with DMBA, tumors developed after ~16 weeks suggesting that loss of Dlx3 has a tumor promoting effect. Whole transcriptome analysis of tumor and skin tissue from our mouse model revealed spontaneous activation of the EGFR–ERBB2 pathway in the absence of Dlx3. Together, our findings from human and mouse model system support a tumor suppressive function for DLX3 in skin and underscore the efficacy of therapeutic approaches that target EGFR–ERBB2 pathway.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Decreased expression of DLX3 correlates with skin cancer progression and poor survival in patients.
Fig. 2: Dlx3 deficiency enhances the development of DMBA/TPA-induced skin tumors.
Fig. 3: Dlx3 deficiency drives tumor promotion in single dose DMBA-only model.
Fig. 4: Epidermal-specific deletion of Dlx3 accelerates tumor formation and tumor numbers in triple dose DMBA only model.
Fig. 5: Dlx3 deficiency facilitates conversion of low risk papillomas to high risk papillomas.
Fig. 6: Gene expression profiling of mouse skin and tumor samples from DMBA-only skin carcinogenesis.
Fig. 7: DLX3 downregulates the activation of EGFR and ERBB2 by moderating the expression of EGFR ligands in healthy epidermis.

References

  1. 1.

    Que SK, Zwald F, Schmults C. Cutaneous squamous cell carcinoma: incidence, risk factors, diagnosis, and staging. J Am Acad Dermatol. 2018;78:237–47.

    PubMed  Google Scholar 

  2. 2.

    Karia PS, Han J, Schmults CD. Cutaneous squamous cell carcinoma: estimated incidence of disease, nodal metastastasis, and deaths from disease in the United States, 2012. J Am Acad Dermatol. 2013;68:957–66.

    PubMed  Google Scholar 

  3. 3.

    Lallas A, Pyne J, Kyrgidis A, Andreani S, Argenziano G, Cavaller A, et al. The clinical and dermoscopic features of invasive cutaneous squamous cell carcinoma depend on the histopathological grade of differentiation. Br J Dermatol. 2015;172:1308–15.

    CAS  PubMed  Google Scholar 

  4. 4.

    Cillo C, Faiella A, Cantile M, Boncinelli E. Homeobox genes and cancer. Exp Cell Res. 1999;248:1–9.

    CAS  PubMed  Google Scholar 

  5. 5.

    Abate-Shen C. Deregulated homeobox gene expression in cancer: cause or consequence? Nat Rev Cancer. 2002;2:777–85.

    CAS  PubMed  Google Scholar 

  6. 6.

    Sun Y, Zhou B, Mao F, Xu J, Miao H, Zou Z, et al. HOXA9 reprograms the enhancer landscape to promote leukemogenesis. Cancer Cell. 2018;34:643–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Shah N, Sukumar S. The hox genes and their roles in oncogenesis. Nat Rev Cancer. 2010;10:361–71.

    CAS  PubMed  Google Scholar 

  8. 8.

    Samuel S, Naora H. Homeobox gene expression in cancer: insights from developmental regulation and deregulation. Eur J Cancer. 2005;41:2428–37.

    CAS  PubMed  Google Scholar 

  9. 9.

    Luo Z, Rhie SK, Farnham PJ. The enigmatic hox genes: can we crack their code? Cancers. 2019;11:323.

    CAS  PubMed Central  Google Scholar 

  10. 10.

    Hwang J, Mehrani T, Millar SE, Morasso MI. Dlx3 is a crucial regulator of hair follicle differentiation and cycling. Development. 2008;135:3149–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Morasso MI, Radoja N. Dlx genes, p63, and ectodermal dysplasias. Birth Defects Res C Embryo Today. 2005;75:163–71.

  12. 12.

    Hwang J, Kita R, Kwon HS, Choi EH, Lee SH, Udey MC, et al. Epidermal ablation of Dlx3 is linked to IL-17-associated skin inflammation. PNAS. 2011;108:11566–71.

    CAS  PubMed  Google Scholar 

  13. 13.

    Bhattacharya S, Kim JC, Ogawa Y, Nakato G, Nagle V, Brooks SR, et al. DLX3-dependent STAT3 signaling in keratinocytes regulates skin immune homeostasis. J Investig Dermatol. 2018;138:1052–61.

    CAS  PubMed  Google Scholar 

  14. 14.

    Palazzo E, Kellett M, Cataisson C, Gormley A, Bible PW, Pietroni V, et al. The homeoprotein DLX3 and tumor suppressor p53 co-regulate cell cycle progression and squamous tumor growth. Oncogene. 2016;35:3114.

    CAS  PubMed  Google Scholar 

  15. 15.

    Witsch E, Sela M, Yarden Y. Roles for growth factors in cancer progression. Physiology. 2010;25:85–101.

    CAS  PubMed  Google Scholar 

  16. 16.

    Dahlhoff M, Muzumdar S, Schafer M, Schneider MR. ERBB2 is essential for the growth of chemically induced skin tumors in mice. J Investig Dermatol. 2017;137:921–30.

    CAS  PubMed  Google Scholar 

  17. 17.

    Dahlhoff M, Schafer M, Muzumdar S, Rose C, Schneider MR. ERBB3 is required for tumor promotion in a mouse model of skin carcinogenesis. Mol Oncol. 2015;9:1825–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Chan KS, Carbajal S, Kiguchi K, Clifford J, Sano S, DiGiovanni J. Epidermal growth factor receptor‐mediated activation of Stat3 during multistage skin carcinogenesis. Cancer Res. 2004;64:2382–9.

    CAS  PubMed  Google Scholar 

  19. 19.

    Dahlhoff M, Rose C, Wolf E, Schneider MR. Decreased incidence of papillomas in mice with impaired EGFR function during multi‐stage skin carcinogenesis. Exp Dermatol. 2011;20:290–3.

    PubMed  Google Scholar 

  20. 20.

    Subramanian J, Katta A, Masood A, Vudem DR, Kancha RK. Emergence of ERBB2 mutation as a biomarker and an actionable target in solid cancers. Oncologist. 2019;24:e1303–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Kiguchi K, Kitamura T, Moore T, Rumi M, Chang HC, Treece D, et al. Dual inhibition of the epidermal growth factor receptor and erbB2 effectively inhibits the promotion of skin tumors during two-stage carcinogenesis. Cancer Prev Res. 2010;3:940–52.

    CAS  Google Scholar 

  22. 22.

    Abel EL, Angel JM, Kiguchi K, DiGiovanni J. Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications. Nat Protoc. 2009;4:1350–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Darwiche N, Ryscavage A, Perez-Lorenzo R, Wright L, Bae D-S, Hennings H, et al. Expression profile of skin papillomas with high cancer risk displays a unique genetic signature that clusters with squamous cell carcinomas and predicts risk for malignant conversion. Oncogene. 2007;26:6885–95.

    CAS  PubMed  Google Scholar 

  24. 24.

    Palazzo E, Kellett MD, Cataisson C, Bible PW, Bhattacharya S, Sun HW, et al. A novel DLX3-PKC integrated signaling network drives keratinocyte differentiation. Cell Death Differ. 2017;4:717–30.

    Google Scholar 

  25. 25.

    Plowright L, Harrington K, Pandha H, Morgan R. HOX transcription factors are potential therapeutic targets in non-small-cell lung cancer (targeting HOX genes in lung cancer). Br J Cancer. 2009;100:470–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Gilbert PM, Mouw JK, Unger MA, Lakins JN, Gbegnon MK, Clemmer VB, et al. Hoxa9 regulates brca1 expression to modulate human breast tumor phenotype. J Clin Investig. 2010;120:1535–50.

    CAS  PubMed  Google Scholar 

  27. 27.

    Raman V, Martensen SA, Reisman D, Evron E, Odenwald WF, Jaffee E, et al. Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature. 2000;405:974–8.

    CAS  PubMed  Google Scholar 

  28. 28.

    Wheeler DL, Verma AK, Denning MF. Mouse models of the skin: models to define mechanisms of skin carcinogenesis. J Skin Cancer. 2013:971495.

  29. 29.

    Wilker E, Lu J, Rho O, Carbajal S, Beltrán L, DiGiovanni J. Role of PI3K/Akt signaling in insulin-like growth factor-1 (IGF-1) skin tumor promotion. Mol Carcinog. 2005;44:137–45.

    CAS  PubMed  Google Scholar 

  30. 30.

    Cataisson C, Ohman R, Patel G, Pearson A, Tsien M, Jay S, et al. Inducible cutaneous inflammation reveals a protumorigenic role for keratinocyte CXCR2 in skin carcinogenesis. Cancer Res. 2009;69:319–28.

  31. 31.

    Mueller MM. Inflammation in epithelial skin tumours: old stories and new ideas. Eur J Cancer. 2006;42:735–44.

    CAS  PubMed  Google Scholar 

  32. 32.

    Gimenez-Conti I, Aldaz CM, Bianchi AB, Roop DR, Slaga TJ, Conti CJ. Early expression of type I K13 keratin in the progression of mouse skin papillomas. Carcinogenesis. 1990;11:1995–9.

    CAS  PubMed  Google Scholar 

  33. 33.

    Toftgard R, Yuspa SH, Roop DR. Keratin gene expression in mouse skin tumors and in mouse skin treated with 12-Otetradecanoylphorbol-13-acetate. Cancer Res. 1985;45:5845–50.

    CAS  PubMed  Google Scholar 

  34. 34.

    Nischt R, Roop DR, Mehrel T, Yuspa SH, Rentrop M, Winter H, et al. Aberrant expression during two-stage mouse skin carcinogenesis of a type I 47-kDa keratin, K13, normally associated with terminal differentiation of internal stratified epithelia. Mol Carcinog. 1988;1:96–108.

    CAS  PubMed  Google Scholar 

  35. 35.

    Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science. 2004;305:1163–7.

    CAS  PubMed  Google Scholar 

  36. 36.

    Nyati MK, Morgan MA, Feng FY, Lawrence TS. Integration of EGFR inhibitors with radiochemotherapy [published correction appears in Nat Rev Cancer. 2006 Dec;6(12):974]. Nat Rev Cancer. 2006;6:876–85.

    CAS  PubMed  Google Scholar 

  37. 37.

    Sorkin A, Goh LK. Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res. 2009;315:683–96.

    CAS  PubMed  Google Scholar 

  38. 38.

    Herbst RS, Shin DM. Monoclonal antibodies to target epidermal growth factor receptor-positive tumors: a new paradigm for cancer therapy. Cancer. 2002;94:1593–611.

    CAS  PubMed  Google Scholar 

  39. 39.

    Kiguchi K, Beltrán L, Rupp T, DiGiovanni J. Altered expression of epidermal growth factor receptor ligands in tumor promoter-treated mouse epidermis and in primary mouse skin tumors induced by an initiation-promotion protocol. Mol Carcinog. 1998;22:73–83.

    CAS  PubMed  Google Scholar 

  40. 40.

    El-Abaseri TB, Fuhrman J, Trempus C, Shendrik I, Tennant RW, Hansen LA. Chemoprevention of UV light-induced skin tumorigenesis by inhibition of the epidermal growth factor receptor. Cancer Res. 2005;65:3958–65.

    CAS  PubMed  Google Scholar 

  41. 41.

    Xian W, Rosenberg MP, DiGiovanni J. Activation of erbb2 and c-src in phorbol ester-treated mouse epidermis: possible role in mouse skin tumor promotion. Oncogene. 1997;14:1435–44.

    CAS  PubMed  Google Scholar 

  42. 42.

    Schneider M, Yarden Y. The EGFR-HER2 module: a stem cell approach to understanding a prime target and driver of solid tumors. Oncogene. 2016;35:2949–60.

    CAS  PubMed  Google Scholar 

  43. 43.

    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Lichti U, Anders J, Yuspa SH. Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient mice. Nat Protoc. 2008;3:799–810.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH (ZIA-AR041124 to MIM). We thank Gutierrez-Cruz and S. Dell’Orso of the NIAMS Genome Analysis Core Facility and members of the NIAMS Light Imaging Core Facility. This work used the computational resources of the NIH High-Performance Computing Biowulf Cluster. We also thank all members of our laboratories for their continuous support. BioRender was used to create experimental design schematic.

Author information

Affiliations

Authors

Contributions

DB, SM, CC, AU, and MIM conceptualize the work; DB, SM, CC, AU, and MIM designed research; DB, SM, CC, AU, YI, MK, EP, and KH performed research; DB, SM, CC, AU, YI, AS, AO, SRB, MK, EP, SM, SY, and MIM analyzed data; and DB, SM, and MIM wrote the paper.

Corresponding author

Correspondence to Maria I. Morasso.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bajpai, D., Mehdizadeh, S., Uchiyama, A. et al. Loss of DLX3 tumor suppressive function promotes progression of SCC through EGFR–ERBB2 pathway. Oncogene 40, 3680–3694 (2021). https://doi.org/10.1038/s41388-021-01802-9

Download citation

Search

Quick links