Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Novel role of CAP1 in regulation RNA polymerase II-mediated transcription elongation depends on its actin-depolymerization activity in nucleoplasm

Abstract

Lung cancer is one of the most intractable diseases with high incidence and mortality worldwide. Adenylate cyclase-associated protein 1 (CAP1), a well-known actin depolymerization factor, is recently reported to be an oncogene accelerating cancer cell proliferation. However, the physiological significance of CAP1 in lung cancer is incompletely understood and the novel functions of CAP1 in transcriptional regulation remain unknown. Here we found that CAP1 was highly expressed in lung cancer tissues and cells, which was also negatively associated with prognosis in lung cancer patients. Moreover, CAP1 promoted A549 cells proliferation by promoting protein synthesis to accelerate cell cycle progression. Mechanistically, we revealed that CAP1 facilitated cyclin-dependent kinase 9 (CDK9)-mediated RNA polymerases (Pol) II-Ser2 phosphorylation and subsequent transcription elongation, and CAP1 performed its function in this progress depending on its actin-depolymerization activity in nucleoplasm. Furthermore, our in vivo findings confirmed that CAP1-promoted A549 xenograft tumor growth was associated with CDK9-mediated Pol II-Ser2 phosphorylation. Our study elucidates a novel role of CAP1 in modulating transcription by promoting polymerase II phosphorylation and suggests that CAP1 is a newly identified biomarker for lung cancer treatment and prognosis prediction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: High CAP1 expression is a prognostic indicator of poor survival in lung cancer patients.
Fig. 2: CAP1 knockdown attenuates A549 cell growth and proliferation.
Fig. 3: Overexpression of CAP1 promotes A549 cell growth and proliferation.
Fig. 4: CAP1 accelerates A549 cell cycle progression.
Fig. 5: CAP1 is required for protein synthesis in A549 cells.
Fig. 6: CAP1 is necessary for RNA polymerase II (Pol II)-mediated transcription by phosphorylating Pol II at Ser 2 in the nucleoplasm.
Fig. 7: CDK9/Pol II-mediated transcriptional elongation depends on the actin-depolymerization activity of CAP1 in the nucleoplasm.
Fig. 8: CAP1 promotes tumor growth by enhancing CDK9-dependent Pol II-Ser2 phosphorylation in vivo.

References

  1. 1.

    Sung H, Ferlay J, Siegel R, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;0:1–14.

    Google Scholar 

  2. 2.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Google Scholar 

  3. 3.

    Larsen JE, Minna JD. Molecular biology of lung cancer: clinical implications. Clin Chest Med. 2011;32:703–40.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Freeman NL, Chen Z, Horenstein J, Weber A, Field J. An actin monomer binding activity localizes to the carboxyl-terminal half of the Saccharomyces cerevisiae cyclase-associated protein. J Biol Chem. 1995;270:5680–5.

    CAS  PubMed  Google Scholar 

  5. 5.

    Zhang H, Ghai P, Wu H, Wang C, Field J, Zhou GL. Mammalian adenylyl cyclase-associated protein 1 (CAP1) regulates cofilin function, the actin cytoskeleton, and cell adhesion. J Biol Chem. 2013;288:20966–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Xie S, Liu Y, Li X, Tan M, Wang C, Field J, et al. Phosphorylation of the cytoskeletal protein CAP1 regulates non-small cell lung cancer survival and proliferation by GSK3β. J Cancer. 2018;9:2825–33.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Tan M, Song X, Zhang G, Peng A, Li X, Li M, et al. Overexpression of adenylate cyclase-associated protein 1 is associated with metastasis of lung cancer. Oncol Rep. 2013;30:1639–44.

    CAS  PubMed  Google Scholar 

  8. 8.

    Lee MJ, Yaffe MB. Protein regulation in signal transduction. Cold Spring Harb Perspect Biol. 2016;8:a005918

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Fan H, Conn AB, Williams PB, Diggs S, Hahm J, Gamper HB, et al. Transcription-translation coupling: direct interactions of RNA polymerase with ribosomes and ribosomal subunits. Nucleic Acids Res. 2017;45:11043–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Bock FJ, Todorova TT, Chang P. RNA regulation by poly(ADP-ribose) polymerases. Mol Cell. 2015;58:959–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Arimbasseri AG, Maraia RJ. RNA polymerase III advances: structural and tRNA functional views. Trends Biochem Sci. 2016;41:546–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Zhang Y, Najmi SM, Schneider DA. Transcription factors that influence RNA polymerases I and II: to what extent is mechanism of action conserved? Biochim Biophys Acta Gene Regul Mech. 2017;1860:246–55.

    CAS  PubMed  Google Scholar 

  13. 13.

    Wang J, Zhao S, Wei Y, Zhou Y, Shore P, Deng W, et al. Differentially modulates RNA polymerase III gene transcription in transformed cell lines. J Biol Chem. 2016;291:25239–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Srivastava R, Ahn SH. Modifications of RNA polymerase II CTD: Connections to the histone code and cellular function. Biotechnol Adv. 2015;33:856–72.

    CAS  PubMed  Google Scholar 

  15. 15.

    Proudfoot NJ. Transcriptional termination in mammals: stopping the RNA polymerase II juggernaut. Science. 2016;352:aad9926.

  16. 16.

    Buratowski S. Progression through the RNA polymerase II CTD cycle. Mol Cell. 2009;36:541–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Lu H, Yu D, Hansen AS, Ganguly S, Liu R, Heckert A, et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature. 2018;558:318–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Hu P, Wu S, Hernandez N. A role for beta-actin in RNA polymerase III transcription. Genes Dev. 2004;18:3010–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Yoo Y, Wu X, Guan JL. A novel role of the actin-nucleating Arp2/3 complex in the regulation of RNA polymerase II-dependent transcription. J Biol Chem. 2007;282:7616–23.

    CAS  PubMed  Google Scholar 

  20. 20.

    Ye J, Zhao J, Hoffmann-Rohrer U, Grummt I. Nuclear myosin I acts in concert with polymeric actin to drive RNA polymerase I transcription. Genes Dev. 2008;22:322–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Vieu E, Hernandez N. Actin’s latest act: polymerizing to facilitate transcription? Nat Cell Biol. 2006;8:650–1.

    CAS  PubMed  Google Scholar 

  22. 22.

    Almuzzaini B, Sarshad AA, Rahmanto AS, Hansson ML, Von Euler A, Sangfelt O, et al. In β-actin knockouts, epigenetic reprogramming and rDNA transcription inactivation lead to growth and proliferation defects. FASEB J. 2016;30:2860–73.

    CAS  PubMed  Google Scholar 

  23. 23.

    Ho CK, Shuman S. Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol Cell. 1999;3:405–11.

    CAS  PubMed  Google Scholar 

  24. 24.

    O’Brien T, Hardin S, Greenleaf A, Lis JT. Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. Nature. 1994;370:75–7.

    PubMed  Google Scholar 

  25. 25.

    Lu H, Zawel L, Fisher L, Egly JM, Reinberg D. Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II. Nature. 1992;358:641–5.

    CAS  PubMed  Google Scholar 

  26. 26.

    Komarnitsky P, Cho EJ, Buratowski S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 2000;14:2452–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Percipalle P, Visa N. Molecular functions of nuclear actin in transcription. J Cell Biol. 2006;172:967–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Fomproix N, Percipalle P. An actin-myosin complex on actively transcribing genes. Exp Cell Res. 2004;294:140–8.

    CAS  PubMed  Google Scholar 

  29. 29.

    Gieni RS, Hendzel MJ. Actin dynamics and functions in the interphase nucleus: moving toward an understanding of nuclear polymeric actin. Biochem Cell Biol. 2009;87:283–306.

    CAS  PubMed  Google Scholar 

  30. 30.

    Serebryannyy LA, Parilla M, Annibale P, Cruz CM, Laster K, Gratton E, et al. Persistent nuclear actin filaments inhibit transcription by RNA polymerase II. J Cell Sci. 2016;129:3412–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Qi T, Tang W, Wang L, Zhai L, Guo L, Zeng X. G-actin participates in RNA polymerase II-dependent transcription elongation by recruiting positive transcription elongation factor b (P-TEFb). J Biol Chem. 2011;286:15171–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Percipalle P. Co-transcriptional nuclear actin dynamics. Nucleus. 2013;4:43–52.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Obrdlik A, Percipalle P. The F-actin severing protein cofilin-1 is required for RNA polymerase II transcription elongation. Nucleus. 2011;2:72–9.

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Zhou Q, Li T, Price DH. RNA polymerase II elongation control. Annu Rev Biochem. 2012;81:119–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Brar GA, Weissman JS. Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat Rev Mol Cell Biol. 2015;16:651–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Van Der Kelen K, Beyaert R, Inzé D, De Veylder L. Translational control of eukaryotic gene expression. Crit Rev Biochem Mol Biol. 2009;44:143–68.

    Google Scholar 

  37. 37.

    Schmidt EK, Clavarino G, Ceppi M, Pierre P. SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods. 2009;6:275–7.

    CAS  PubMed  Google Scholar 

  38. 38.

    Bogomoletz WV, Pourny C, Didier B. Argyrophilic nuclear organiser region counts in locally advanced breast carcinoma treated by chemotherapy before surgery. Eur J Cancer. 1990;26:1042–4.

    CAS  PubMed  Google Scholar 

  39. 39.

    Serin G, Joseph G, Faucher C, Ghisolfi L, Bouche G, Amalric F, et al. Localization of nucleolin binding sites on human and mouse pre-ribosomal RNA. Biochimie. 1996;78:530–8.

    CAS  PubMed  Google Scholar 

  40. 40.

    Philimonenko VV, Zhao J, Iben S, Dingová H, Kyselá K, Kahle M, et al. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat Cell Biol. 2004;6:1165–72.

    CAS  PubMed  Google Scholar 

  41. 41.

    Riss TL, Moravec RA, Niles AL. Cytotoxicity testing: measuring viable cells, dead cells, and detecting mechanism of cell death. Methods Mol Biol. 2011;740:103–14.

    CAS  PubMed  Google Scholar 

  42. 42.

    Chen F, Chen X, Shilatifard A. Stably paused genes revealed through inhibition of transcription initiation by the TFIIH inhibitor triptolide. Genes Dev. 2015;29:39–47.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Gilchrist D, Nechaev S, Lee C, Ghosh S, Collins J, Li L, et al. NELF-mediated stalling of Pol II can enhance gene expression by blocking promoter-proximal nucleosome assembly. Genes Dev. 2008;22:1921–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Yamaguchi K, Lantowski A, Dannenberg A, Subbaramaiah K. Histone deacetylase inhibitors suppress the induction of c-Jun and its target genes including COX-2. J Biol Chem. 2005;280:32569–77.

    CAS  PubMed  Google Scholar 

  45. 45.

    Smith E, Winter B, Eissenberg J, Shilatifard A. Regulation of the transcriptional activity of poised RNA polymerase II by the elongation factor ELL. PNAS. 2008;105:8575–9.

    CAS  PubMed  Google Scholar 

  46. 46.

    Pawlus M, Wang L, Murakami A, Dai G, Hu C. STAT3 or USF2 contributes to HIF target gene specificity. PLoS One. 2013;8:e72358.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Wu L, Pan J, Thoroddsen V, Wysong DR, Blackman RK, Bulawa CE, et al. Novel small-molecule inhibitors of RNA polymerase III. Eukaryot Cell. 2003;2:256–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Yee NS, Zhou W, Chun SG, Liang IC, Yee RK. Targeting developmental regulators of zebrafish exocrine pancreas as a therapeutic approach in human pancreatic cancer. Biol Open. 2012;1:295–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Bertling E, Hotulainen P, Mattila PK, Matilainen T, Salminen M, Lappalainen P. Cyclase-associated protein 1 (CAP1) promotes cofilin-induced actin dynamics in mammalian nonmuscle cells. Mol Biol Cell. 2004;15:2324–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Hofmann WA, Stojiljkovic L, Fuchsova B, Vargas GM, Mavrommatis E, Philimonenko V, et al. Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nat Cell Biol. 2004;6:1094–101.

    CAS  PubMed  Google Scholar 

  51. 51.

    Moriyama K, Yahara I. Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover. J Cell Sci. 2002;115:1591–601.

    CAS  PubMed  Google Scholar 

  52. 52.

    Kolegova ES, Kakurina GV, Kondakova IV, Dobrodeev AY, Kostromitskii DN, Zhuikova LD. Adenylate cyclase-associated protein 1 and cofilin in progression of non-small cell lung cancer. Bull Exp Biol Med. 2019;167:393–5.

    CAS  PubMed  Google Scholar 

  53. 53.

    White-Gilbertson S, Kurtz DT, Voelkel-Johnson C. The role of protein synthesis in cell cycling and cancer. Mol Oncol. 2009;3:402–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Liu Y, Cui X, Hu B, Lu C, Huang X, Cai J, et al. Upregulated expression of CAP1 is associated with tumor migration and metastasis in hepatocellular carcinoma. Pathol Res Pract. 2014;210:169–75.

    CAS  PubMed  Google Scholar 

  55. 55.

    Blank HM, Maitra N, Polymenis M. Lipid biosynthesis: When the cell cycle meets protein synthesis? Cell Cycle. 2017;16:905–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Hasan R, Zhou GL. The cytoskeletal protein cyclase-associated protein 1 (CAP1) in breast cancer: context-dependent roles in both the invasiveness and proliferation of cancer cells and underlying cell signals. Int J Mol Sci. 2019;20:2653

    CAS  PubMed Central  Google Scholar 

  57. 57.

    Pérez-Ortín J, Alepuz P, Chávez S, Choder M. Eukaryotic mRNA decay: methodologies, pathways, and links to other stages of gene expression. J Mol Biol. 2013;425:3750–75.

    PubMed  Google Scholar 

  58. 58.

    de Falco G, Giordano A. CDK9 (PITALRE): a multifunctional cdc2-related kinase. J Cell Physiol. 1998;177:501–6.

    PubMed  Google Scholar 

  59. 59.

    Holmberg Olausson K, Nistér M, Lindström M. Loss of nucleolar histone chaperone NPM1 triggers rearrangement of heterochromatin and synergizes with a deficiency in DNA methyltransferase DNMT3A to drive ribosomal DNA transcription. J Biol Chem. 2014;289:34601–19.

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Hoeffer CA, Cowansage KK, Arnold EC, Banko JL, Moerke NJ, Rodriguez R, et al. Inhibition of the interactions between eukaryotic initiation factors 4E and 4G impairs long-term associative memory consolidation but not reconsolidation. PNAS. 2011;108:3383–8.

    CAS  PubMed  Google Scholar 

  61. 61.

    Liang H, Chen X, Yin Q, Ruan D, Zhao X, Zhang C, et al. PTENβ is an alternatively translated isoform of PTEN that regulates rDNA transcription. Nat Commun. 2017;8:14771.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 81874357) and the Youth Talent Project of Army Medical University (Grant No. 2019R050).

Author information

Affiliations

Authors

Contributions

QZ, QT, JH, and GL designed experiments; QZ, QT, WL, CH, FL, MZ, and YL performed all experiments; QZ, QT, WL, FS, XL, and HY analyzed the data; QZ, JH, and GL wrote the paper.

Corresponding authors

Correspondence to Jingbin Huang or Guobing Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Tang, Q., Liu, W. et al. Novel role of CAP1 in regulation RNA polymerase II-mediated transcription elongation depends on its actin-depolymerization activity in nucleoplasm. Oncogene 40, 3492–3509 (2021). https://doi.org/10.1038/s41388-021-01789-3

Download citation

Search

Quick links