Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Arginine and lysine methylation of MRPS23 promotes breast cancer metastasis through regulating OXPHOS

Abstract

Mitochondrial oxidative phosphorylation (OXPHOS) is a vital regulator of tumor metastasis. However, the mechanisms governing OXPHOS to facilitate tumor metastasis remain unclear. In this study, we discovered that arginine 21(R21) and lysine 108 (K108) of mitochondrial ribosomal protein S23 (MRPS23) was methylated by the protein arginine methyltransferase 7 (PRMT7) and SET-domain-containing protein 6 (SETD6), respectively. R21 methylation accelerated the poly-ubiquitin-dependent degradation of MRPS23 to a low level. The MRPS23 degradation inhibited OXPHOS with elevated mtROS level, which consequently increased breast cancer cell invasion and metastasis. In contrast, K108 methylation increased MRPS23 stability, and K108 methylation coordinated with R21 methylation to maintain a low level of MRPS23, which was in favor of supporting breast cancer cell survival through regulating OXPHOS. Consistently, R21 and K108 methylation was correlated with malignant breast carcinoma. Significantly, our findings unveil a unique mechanism of controlling OXPHOS by arginine and lysine methylation and point to the impact of the PRMT7-SETD6-MRPS23 axis during breast cancer metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MRPS23 is methylated at R21 by PRMT7.
Fig. 2: MRPS23 R21 methylation potentiates breast cancer cell metastasis through inhibiting OXPHOS.
Fig. 3: MRPS23 R21 methylation promotes the degradation of MRPS23 protein to a low level.
Fig. 4: MRPS23 K108 methylation coordinates with R21 methylation to maintain the low level of MRPS23.
Fig. 5: MRPS23 K108 methylation plays an essential role in breast cancer cell survival through regulating OXPHOS.
Fig. 6: MRPS23 R21 and K108 methylation is associated with a high grade of breast carcinoma.
Fig. 7: A proposed model for the arginine and lysine methylation of MRPS23 to regulate the stability of MRPS23 protein.

Similar content being viewed by others

References

  1. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147:275–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Porporato P, Payen V, Pérez-Escuredo J, DeSaedeleer C, Danhier P, Copetti T, et al. A mitochondrial switch promotes tumor metastasis. Cell Rep. 2014;8:754.

    Article  CAS  PubMed  Google Scholar 

  3. Wu W, Zheng X, Wang J, Yang T, Dai W, Song S, et al. O-GlcNAcylation on Rab3A attenuates its effects on mitochondrial oxidative phosphorylation and metastasis in hepatocellular carcinoma. Cell Death Dis. 2018;9:970.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA. 1993;90:7915–22.

    Article  CAS  PubMed  Google Scholar 

  5. Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science. 2008;320:661–4.

    Article  CAS  PubMed  Google Scholar 

  6. Ward P, Thompson C. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer cell. 2012;21:297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guiyuan Chen, Shirui Shengke, Meng Zhongjian, et al. MTERF1 regulates the oxidative phosphorylation activity and cell proliferation in HeLa cells. Acta Biochim Biophys Sin. 2014;46:512–21.

    Article  Google Scholar 

  8. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  Google Scholar 

  9. Ping G, Irina T, Tsung-Cheng C, Yun-Sil L, Kayoko K, Takafumi O, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458:762–5.

    Article  Google Scholar 

  10. Kenmochi N, Suzuki T, Uechi T, Magoori M, Kuniba M, Higa S, et al. The human mitochondrial ribosomal protein genes: mapping of 54 genes to the chromosomes and implications for human disorders. Genomics. 2001;77:65–70.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Z, Gerstein M. Identification and characterization of over 100 mitochondrial ribosomal protein pseudogenes in the human genome. Genomics. 2003;81:468–80.

    Article  CAS  PubMed  Google Scholar 

  12. Kohda M, Tokuzawa Y, Kishita Y, Nyuzuki H, Moriyama Y, Mizuno Y, et al. A comprehensive genomic analysis reveals the genetic landscape of mitochondrial respiratory chain complex deficiencies. PLoS Genet. 2016;12:e1005679.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pu M, Wang J, Huang Q, Zhao G, Xia C, Shang R, et al. High MRPS23 expression contributes to hepatocellular carcinoma proliferation and indicates poor survival outcomes. Tumour Biol. 2017;39:1010428317709127.

    Article  PubMed  Google Scholar 

  14. Gao Y, Li F, Zhou H, Yang Y, Wu R, Chen Y, et al. Down-regulation of MRPS23 inhibits rat breast cancer proliferation and metastasis. Oncotarget. 2017;8:71772–81.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Klaestad E, Opdahl S, Engstrom MJ, Ytterhus B, Wik E, Bofin AM, et al. MRPS23 amplification and gene expression in breast cancer; association with proliferation and the non-basal subtypes. Breast cancer Res Treat. 2020;180:73–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu F, Ma F, Wang Y, Hao L, Zeng H, Jia C, et al. PKM2 methylation by CARM1 activates aerobic glycolysis to promote tumorigenesis. Nat Cell Biol. 2017;19:1358–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell. 2012;48:491–507.

    Article  CAS  PubMed  Google Scholar 

  18. Wang YP, Zhou W, Wang J, Huang X, Zuo Y, Wang TS, et al. Arginine methylation of MDH1 by CARM1 inhibits glutamine metabolism and suppresses pancreatic cancer. Mol Cell. 2016;64:673–87.

    Article  CAS  PubMed  Google Scholar 

  19. Zurita-Lopez CI, Sandberg T, Kelly R, Clarke SG. Human protein arginine methyltransferase 7 (PRMT7) is a type III enzyme forming omega-NG-monomethylated arginine residues. J Biol Chem. 2012;287:7859–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ferreira TR, Dowle AA, Parry E, Alves-Ferreira EVC, Hogg K, Kolokousi F, et al. PRMT7 regulates RNA-binding capacity and protein stability in Leishmania parasites. Nucleic Acids Res. 2020;48:5511–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baldwin RM, Haghandish N, Daneshmand M, Amin S, Paris G, Falls TJ, et al. Protein arginine methyltransferase 7 promotes breast cancer cell invasion through the induction of MMP9 expression. Oncotarget. 2015;6:3013–32.

    Article  PubMed  Google Scholar 

  22. Yao R, Jiang H, Ma Y, Wang L, Wang L, Du J, et al. PRMT7 induces epithelial-to-mesenchymal transition and promotes metastasis in breast cancer. Cancer Res. 2014;74:5656–67.

    Article  CAS  PubMed  Google Scholar 

  23. Geng P, Zhang Y, Liu X, Zhang N, Liu Y, Liu X, et al. Automethylation of protein arginine methyltransferase 7 and its impact on breast cancer progression. Faseb J. 2017;31:2287.

    Article  CAS  PubMed  Google Scholar 

  24. Olivier B, Ana S, Gary LR, Lemischka IR, Garcia BA, Stéphane R. SETD6 monomethylates H2AZ on lysine 7 and is required for the maintenance of embryonic stem cell self-renewal. Epigenetics. 2013;8:177–83.

    Article  Google Scholar 

  25. Binda O. Lysine methyltransferase SETD6 modifies histones on a glycine-lysine motif. Epigenetics. 2020;15:26–31.

    Article  PubMed  Google Scholar 

  26. Dan L, Kuo AJ, Chang Y, Schaefer U, Kitson C, Cheung P, et al. SETD6 lysine methylation of RelA couples GLP activity at chromatin to tonic repression of NF-κB signaling. Nat Immunol. 2011;12:29–36.

    Article  Google Scholar 

  27. Vershinin Z, Feldman M, Chen A, Levy D. PAK4 methylation by SETD6 promotes the activation of the wnt/beta-catenin pathway. J Biol Chem. 2016;291:6786–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Feldman M, Vershinin Z, Goliand I, Elia N, Levy D. The methyltransferase SETD6 regulates mitotic progression through PLK1 methylation. Proc Natl Acad Sci USA. 2019;116:1235–40.

    Article  CAS  PubMed  Google Scholar 

  29. O’Neill DJ, Stuart Charles W, Dhuha A, Marilyn G, Luke G, Robson CN, et al. SETD6 controls the expression of estrogen-responsive genes and proliferation of breast carcinoma cells. Epigenetics. 2014;9:9.

    Google Scholar 

  30. Jain K, Jin CY, Clarke SG. Epigenetic control via allosteric regulation of mammalian protein arginine methyltransferases. Proc Natl Acad Sci USA. 2017;114:10101.

    Article  CAS  PubMed  Google Scholar 

  31. Piao L, Suzuki T, Dohmae N, Nakamura Y, Hamamoto R. SUV39H2 methylates and stabilizes LSD1 by inhibiting polyubiquitination in human cancer cells. Oncotarget. 2015;6:16939–50.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hamamoto R, Saloura V, Nakamura Y. Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nat Rev Cancer. 2015;15:110–24.

    Article  CAS  PubMed  Google Scholar 

  33. Gupta SC, David H, Sridevi P, Byoungduck P, Wonil K, Aggarwal BB. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal. 2012;16:1295–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou C, Sun H, Zheng C, Gao J, Fu Q, Hu N, et al. Oncogenic HSP60 regulates mitochondrial oxidative phosphorylation to support Erk1/2 activation during pancreatic cancer cell growth. Cell Death Dis. 2018;9:161.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fogal V, Richardson AD, Karmali PP, Scheffler IE, Smith JW, Ruoslahti E. Mitochondrial p32 protein is a critical regulator of tumor metabolism via maintenance of oxidative phosphorylation. Mol Cell Biol. 2010;30:1303–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gopisetty G, Thangarajan R. Mammalian mitochondrial ribosomal small subunit (MRPS) genes: a putative role in human disease. Gene. 2016;589:27–35.

    Article  CAS  PubMed  Google Scholar 

  37. Gatza ML, Silva GO, Parker JS, Fan C, Perou CM. An integrated genomics approach identifies drivers of proliferation in luminal-subtype human breast cancer. Nat Genet. 2014;46:1051–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Warburg O. On the origin of cancer cells. Science. 1956;123:309.

    Article  CAS  PubMed  Google Scholar 

  39. Wong TL, Ng KY, Tan KV, Chan LH, Zhou L, Che N, et al. CRAF methylation by PRMT6 regulates aerobic glycolysis-driven hepatocarcinogenesis via ERK-dependent PKM2 nuclear relocalization and activation. Hepatol (Baltim, Md). 2020;71:1279–96.

    Article  CAS  Google Scholar 

  40. Sullivan LB, Chandel NS. Mitochondrial reactive oxygen species and cancer. Cancer Metab. 2014;2:1–12.

    Article  Google Scholar 

  41. Biggar KK, Shawn S-CL. Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol. 2015;16:5.

    Article  CAS  PubMed  Google Scholar 

  42. Boisvert FM, Chenard CA, Richard S. Protein interfaces in signaling regulated by arginine methylation. Science Signaling. 2005;2005:re2.

    Google Scholar 

  43. Yang Y, Bedford MT. Protein arginine methyltransferases and cancer. Nat Rev Cancer. 2013;13:37–50.

    Article  CAS  PubMed  Google Scholar 

  44. Le DD, Fujimori DG. Protein and nucleic acid methylating enzymes: mechanisms and regulation. Curr Opin Chem Biol. 2012;16:507–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Del Rizzo PA, Trievel RC. Molecular basis for substrate recognition by lysine methyltransferases and demethylases. Biochim Biophys Acta. 2014;1839:1404–15.

    Article  PubMed  Google Scholar 

  46. Bedford TM. Arginine methylation at a glance. J Cell Sci. 2007;120:4243–6.

    Article  CAS  PubMed  Google Scholar 

  47. Caslavka Zempel KE, Vashisht AA, Barshop WD, Wohlschlegel JA, Clarke SG. Determining the mitochondrial methyl proteome in saccharomyces cerevisiae using heavy methyl SILAC. J Proteome Res. 2016;15:4436–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim HJ, Maiti P, Barrientos A. Mitochondrial ribosomes in cancer. Semin Cancer Biol. 2017;47:67–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hou P, Zhao Y, Li Z, Yao R, Ma M, Gao Y, et al. LincRNA-ROR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis. Cell Death Dis. 2014;5:e1287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao L, Zhang Y, Gao Y, Geng P, Lu Y, Liu X, et al. JMJD3 promotes SAHF formation in senescent WI38 cells by triggering an interplay between demethylation and phosphorylation of RB protein. Cell Death Differ. 2015;22:1630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang J, Liang Q, Lei Y, Yao M, Li L, Gao X, et al. SOX4 induces epithelial-mesenchymal transition and contributes to breast cancer progression. Cancer Res. 2012;72:4597–608.

    Article  CAS  PubMed  Google Scholar 

  52. Zielonka J, Kalyanaraman B. Hydroethidine- and mitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med. 2010;48:983–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dewhirst MW. Relationships between cycling hypoxia, HIF-1, angiogenesis and oxidative stress. Radiat Res. 2009;172:653–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Feng J, Li L, Zhang N, Liu J, Zhang L, Gao H, et al. Androgen and AR contribute to breast cancer development and metastasis: an insight of mechanisms. Oncogene. 2017;36:2775–90.

    Article  CAS  PubMed  Google Scholar 

  55. Sayin VI, Ibrahim MX, Erik L, Nilsson JA, Per L, Bergo MO. Antioxidants accelerate lung cancer progression in mice. Sci Transl Med. 2014;6:221ra215.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from the National Natural Science Foundation of China (grant numbers: 31770825, 31571317, 31570718, 31771335, and 31870765) and the Science and Technology Development Project of Jilin province (grant number: 20180101232JC, 20180101234JC, and 20200404106YY).

Author information

Authors and Affiliations

Authors

Contributions

LL performed research, analyzed results, and wrote the paper. XZ, HD, GW, JH, and DC performed research. XL, NZ, JL, CL, and YL provided critical reagents. JL, YZ, and BH designed and performed research, analyzed results, and wrote the paper.

Corresponding authors

Correspondence to Yu Zhang or Jun Lu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhang, X., Ding, H. et al. Arginine and lysine methylation of MRPS23 promotes breast cancer metastasis through regulating OXPHOS. Oncogene 40, 3548–3563 (2021). https://doi.org/10.1038/s41388-021-01785-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01785-7

This article is cited by

Search

Quick links