Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Loss of activating transcription factor 3 prevents KRAS-mediated pancreatic cancer


The unfolded protein response (UPR) is activated in pancreatic pathologies and suggested as a target for therapeutic intervention. In this study, we examined activating transcription factor 3 (ATF3), a mediator of the UPR that promotes acinar-to-ductal metaplasia (ADM) in response to pancreatic injury. Since ADM is an initial step in the progression to pancreatic ductal adenocarcinoma (PDAC), we hypothesized that ATF3 is required for initiation and progression of PDAC. We generated mice carrying a germline mutation of Atf3 (Atf3−/−) combined with acinar-specific induction of oncogenic KRAS (Ptf1acreERT/+KrasG12D/+). Atf3−/− mice with (termed APK) and without KRASG12D were exposed to cerulein-induced pancreatitis. In response to recurrent pancreatitis, Atf3−/− mice showed decreased ADM and enhanced regeneration based on morphological and biochemical analysis. Similarly, an absence of ATF3 reduced spontaneous pancreatic intraepithelial neoplasia (PanIN) formation and PDAC in Ptf1acreERT/+KrasG12D/+ mice. In response to injury, KRASG12D bypassed the requirement for ATF3 with a dramatic loss in acinar tissue and PanIN formation observed regardless of ATF3 status. Compared to Ptf1acreERT/+KrasG12D/+ mice, APK mice exhibited a significant decrease in pancreatic and total body weight, did not progress through to PDAC, and showed altered pancreatic fibrosis and immune cell infiltration. These findings suggest a complex, multifaceted role for ATF3 in pancreatic cancer pathology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Atf3−/− mice show accelerated pancreatic regeneration in response to recurrent pancreatic injury.
Fig. 2: Atf3−/− mice exhibit reduced ADM in response to recurrent pancreatic injury.
Fig. 3: The ADM transcriptional program is reduced in the absence of ATF3.
Fig. 4: Atf3−/ mice show minimal spontaneous ADM and PanIN formation following activation of oncogenic KRAS.
Fig. 5: ATF3 is dispensable for progression but not maintaining PanINs when KRASG12D activation is coupled with pancreatic injury.
Fig. 6: ATF3 is required for establishment and maintenance of the molecular ADM profile in the presence of KRASG12D.
Fig. 7: APK mice display enhanced fibrosis at early time point after pancreatic injury.
Fig. 8: APK mice showed an altered inflammatory response to pancreatic damage.


  1. 1.

    Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8:519–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Kadowaki H, Nishitoh H. Signaling pathways from the endoplasmic reticulum and their roles in disease. Genes (Basel). 2013;4:306–33.

    Google Scholar 

  3. 3.

    Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K, Mori K. A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell. 2003;4:265–71.

    CAS  PubMed  Google Scholar 

  4. 4.

    Chang YS, Jalgaonkar SP, Middleton JD, Hai T. Stress-inducible gene Atf3 in the noncancer host cells contributes to chemotherapy-exacerbated breast cancer metastasis. Proc Natl Acad Sci USA. 2017;114:E7159–68.

    CAS  PubMed  Google Scholar 

  5. 5.

    Song X, Lu F, Liu RY, Lei Z, Zhao J, Zhou Q, et al. Association between the ATF3 gene and non-small cell lung cancer. Thorac Cancer. 2012;3:217–23.

    CAS  PubMed  Google Scholar 

  6. 6.

    Hackl C, Lang SA, Moser C, Mori A, Fichtner-Feigl S, Hellerbrand C, et al. Activating transcription factor-3 (ATF3) functions as a tumor suppressor in colon cancer and is up-regulated upon heat-shock protein 90 (Hsp90) inhibition. BMC Cancer. 2010;10:668.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Yan F, Ying L, Li X, Qiao B, Meng Q, Yu L, et al. Overexpression of the transcription factor ATF3 with a regulatory molecular signature associates with the pathogenic development of colorectal cancer. Oncotarget. 2017;8:47020–36.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Thakur PC, Miller-Ocuin JL, Nguyen K, Matsuda R, Singhi AD, Zeh HJ, et al. Inhibition of endoplasmic-reticulum-stress-mediated autophagy enhances the effectiveness of chemotherapeutics on pancreatic cancer. J Transl Med. 2018;16:190.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Garcia-Carbonero N, Li W, Cabeza-Morales M, Martinez-Useros J, Garcia-Foncillas J. New hope for pancreatic ductal adenocarcinoma treatment targeting endoplasmic reticulum stress response: a systematic review. Int J Mol Sci. 2018;19:2468–2464.

    PubMed Central  Google Scholar 

  10. 10.

    Chien W, Ding LW, Sun QY, Torres-Fernandez LA, Tan SZ, Xiao J, et al. Selective inhibition of unfolded protein response induces apoptosis in pancreatic cancer cells. Oncotarget. 2014;5:4881–94.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Hess DA, Humphrey SE, Ishibashi J, Damsz B, Lee AH, Glimcher LH, et al. Extensive pancreas regeneration following acinar-specific disruption of Xbp1 in mice. Gastroenterology. 2011;141:1463–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 1999;397:271–4.

    CAS  PubMed  Google Scholar 

  13. 13.

    Iwawaki T, Akai R, Kohno K. IRE1alpha disruption causes histological abnormality of exocrine tissues, increase of blood glucose level, and decrease of serum immunoglobulin level. PLoS ONE. 2010;5:e13052.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Li M, Baumeister P, Roy B, Phan T, Foti D, Luo S, et al. ATF6 as a transcription activator of the endoplasmic reticulum stress element: thapsigargin stress-induced changes and synergistic interactions with NF-Y and YY1. Mol Cell Biol. 2000;20:5096–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2000;2:326–32.

    CAS  PubMed  Google Scholar 

  16. 16.

    Blais JD, Filipenko V, Bi M, Harding HP, Ron D, Koumenis C, et al. Activating transcription factor 4 is translationally regulated by hypoxic stress. Mol Cell Biol. 2004;24:7469–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    B’chir W, Maurin AC, Carraro V, Averous J, Jousse C, Muranishi Y, et al. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 2013;41:7683–99.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. The integrated stress response. EMBO Rep. 2016;17:1374–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Jiang HY, Wek SA, McGrath BC, Lu D, Hai T, Harding HP, et al. Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. Mol Cell Biol. 2004;24:1365–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Iida K, Li Y, McGrath BC, Frank A, Cavener DR. PERK eIF2 alpha kinase is required to regulate the viability of the exocrine pancreas. BMC Cell Biol. 2007;8:38.

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Kowalik AS, Johnson CL, Chadi SA, Weston JY, Fazio EN, Pin CL. Mice lacking the transcription factor Mist1 exhibit an altered stress response and increased sensitivity to caerulein-induced pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2007;292:G1123–1132.

    CAS  PubMed  Google Scholar 

  22. 22.

    Fazio EN, Young CC, Toma J, Levy M, Berger KR, Johnson CL, et al. Activating transcription factor 3 promotes loss of the acinar cell phenotype in response to cerulein-induced pancreatitis in mice. Mol Biol Cell. 2017;28:2347–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Kubisch CH, Logsdon CD. Secretagogues differentially activate endoplasmic reticulum stress responses in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol. 2007;292:G1804–12.

    CAS  PubMed  Google Scholar 

  24. 24.

    Kang Y, Chen CR, Massagué J. A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell. 2003;11:915–26.

    CAS  PubMed  Google Scholar 

  25. 25.

    Je YJ, Choi DK, Sohn KC, Kim HR, Im M, Lee Y, et al. Inhibitory role of Id1 on TGF-β-induced collagen expression in human dermal fibroblasts. Biochem Biophys Res Commun. 2014;444:81–85.

    CAS  PubMed  Google Scholar 

  26. 26.

    Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Roach JC, et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature. 2006;441:173–8.

    CAS  PubMed  Google Scholar 

  27. 27.

    Dawn B, Xuan YT, Guo Y, Rezazadeh A, Stein AB, Hunt G, et al. IL-6 plays an obligatory role in late preconditioning via JAK-STAT signaling and upregulation of iNOS and COX-2. Cardiovasc Res. 2004;64:61–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Boespflug ND, Kumar S, McAlees JW, Phelan JD, Grimes HL, Hoebe K, et al. ATF3 is a novel regulator of mouse neutrophil migration. Blood. 2014;123:2084–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Kim DE, Procopio MG, Ghosh S, Jo SH, Goruppi S, Magliozzi F, et al. Convergent roles of ATF3 and CSL in chromatin control of cancer-associated fibroblast activation. J Exp Med. 2017;214:2349–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Wu X, Nguyen BC, Dziunycz P, Chang S, Brooks Y, Lefort K, et al. Opposing roles for calcineurin and ATF3 in squamous skin cancer. Nature. 2010;465:368–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Bandyopadhyay S, Wang Y, Zhan R, Pai SK, Watabe M, Iiizumi M, et al. The tumor metastasis suppressor gene Drg-1 down-regulates the expression of activating transcription factor 3 in prostate cancer. Cancer Res. 2006;66:11983–90.

    CAS  PubMed  Google Scholar 

  32. 32.

    Wang A, Arantes S, Yan L, Kiguchi K, McArthur MJ, Sahin A, et al. The transcription factor ATF3 acts as an oncogene in mouse mammary tumorigenesis. BMC Cancer. 2008;8:268.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Song HM, Park GH, Eo HJ, Jeong JB. Naringenin-mediated ATF3 expression contributes to apoptosis in human colon cancer. Biomol Ther (Seoul). 2016;24:140–6.

    CAS  Google Scholar 

  34. 34.

    Kim KJ, Lee J, Park Y, Lee SH. ATF3 mediates anti-cancer activity of trans-10, cis-12-conjugated linoleic acid in human colon cancer cells. Biomol Ther (Seoul). 2015;23:134–40.

    CAS  Google Scholar 

  35. 35.

    Johnson CL, Kowalik AS, Rajakumar N, Pin CL. Mist1 is necessary for the establishment of granule organization in serous exocrine cells of the gastrointestinal tract. Mech Dev. 2004;121:261–72.

    CAS  PubMed  Google Scholar 

  36. 36.

    Tsuda M, Fukuda A, Roy N, Hiramatsu Y, Leonhardt L, Kakiuchi N, et al. The BRG1/SOX9 axis is critical for acinar cell-derived pancreatic tumorigenesis. J Clin Invest. 2018;128:3475–89.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Shi G, Direnzo D, Qu C, Barney D, Miley D, Konieczny SF. Maintenance of acinar cell organization is critical to preventing Kras-induced acinar-ductal metaplasia. Oncogene. 2013;32:1950–8.

    CAS  PubMed  Google Scholar 

  38. 38.

    Yadav D, Lowenfels AB. The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology. 2013;144:1252–61.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Kopp JL, Dubois CL, Schaffer AE, Hao E, Shih HP, Seymour PA, et al. Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development. 2011;138:653–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Pin CL, Rukstalis JM, Johnson C, Konieczny SF. The bHLH transcription factor Mist1 is required to maintain exocrine pancreas cell organization and acinar cell identity. J Cell Biol. 2001;155:519–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Roy N, Takeuchi KK, Ruggeri JM, Bailey P, Chang D, Li J, et al. PDX1 dynamically regulates pancreatic ductal adenocarcinoma initiation and maintenance. Genes Dev. 2016;30:2669–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Pinho AV, Rooman I, Reichert M, De Medts N, Bouwens L, Rustgi AK, et al. Adult pancreatic acinar cells dedifferentiate to an embryonic progenitor phenotype with concomitant activation of a senescence programme that is present in chronic pancreatitis. Gut. 2011;60:958–66.

    CAS  PubMed  Google Scholar 

  43. 43.

    Carrière C, Young AL, Gunn JR, Longnecker DS, Korc M. Acute pancreatitis accelerates initiation and progression to pancreatic cancer in mice expressing oncogenic Kras in the nestin cell lineage. PLoS ONE. 2011;6:e27725.

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Delous M, Yin C, Shin D, Ninov N, Debrito Carten J, Pan L, et al. Sox9b is a key regulator of pancreaticobiliary ductal system development. PLoS Genet. 2012;8:e1002754.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Prevot PP, Simion A, Grimont A, Colletti M, Khalaileh A, Van den Steen G, et al. Role of the ductal transcription factors HNF6 and Sox9 in pancreatic acinar-to-ductal metaplasia. Gut. 2012;61:1723–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Gardian K, Janczewska S, Olszewski WL, Durlik M. Analysis of pancreatic cancer microenvironment: role of macrophage infiltrates and growth factors expression. J Cancer. 2012;3:285–91.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Kurahara H, Shinchi H, Mataki Y, Maemura K, Noma H, Kubo F, et al. Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J Surg Res. 2011;167:e211–9.

    PubMed  Google Scholar 

  48. 48.

    Helm O, Held-Feindt J, Grage-Griebenow E, Reiling N, Ungefroren H, Vogel I, et al. Tumor-associated macrophages exhibit pro- and anti-inflammatory properties by which they impact on pancreatic tumorigenesis. Int J Cancer. 2014;135:843–61.

    CAS  PubMed  Google Scholar 

  49. 49.

    Mallano T, Palumbo-Zerr K, Zerr P, Ramming A, Zeller B, Beyer C, et al. Activating transcription factor 3 regulates canonical TGFβ signalling in systemic sclerosis. Ann Rheum Dis. 2016;75:586–92.

    CAS  PubMed  Google Scholar 

  50. 50.

    Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 2007;67:9518–27.

    CAS  PubMed  Google Scholar 

  51. 51.

    Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11:619–33.

    CAS  PubMed  Google Scholar 

  52. 52.

    Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4:437–50.

    CAS  PubMed  Google Scholar 

  53. 53.

    Pin CL, Bonvissuto AC, Konieczny SF. Mist1 expression is a common link among serous exocrine cells exhibiting regulated exocytosis. Anat Rec. 2000;259:157–67.

    CAS  PubMed  Google Scholar 

  54. 54.

    Young CC, Baker RM, Howlett CJ, Hryciw T, Herman JE, Higgs D, et al. The loss of ATRX increases susceptibility to pancreatic injury and oncogenic KRAS in female but not male mice. Cell Mol Gastroenterol Hepatol. 2019;7:93–113.

    PubMed  Google Scholar 

  55. 55.

    Steele NG, Biffi G, Kemp SB, Zhang Y, Drouillard D, Syu L. et al. Inhibition of Hedgehog signaling alters fibroblast composition in pancreatic cancer. Clin Canc Res. 2021;27:2023–37.

    Google Scholar 

Download references


The authors wish to acknowledge the ongoing support of several national research funding agencies for this work including the Canadian Institutes of Health Research (MOP#PJT166029), the Cancer Research Society of Canada, and the Rob Lutterman Foundation for Pancreatic Cancer Research. This work would not be possible without specific support from a London Regional Cancer Centre Catalyst Grant, co-supported by Keith Sammit and an internal bridge grant from the University of Western Ontario. NA and JT were funded by studentships from the Ontario Graduate Scholarships and Cancer Research and Technology Training (CaRTT) program. MFK was supported by an NSERC summer studentship. JS was supported by National Cancer Institute of the National Institutes of Health under award number K08CA234222.

Author information



Corresponding author

Correspondence to Christopher L. Pin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All animal experiments were performed according to regulations established by the Animal Care and Use Committee at Western University (protocol #2017-001).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azizi, N., Toma, J., Martin, M. et al. Loss of activating transcription factor 3 prevents KRAS-mediated pancreatic cancer. Oncogene 40, 3118–3135 (2021).

Download citation


Quick links