Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Schlafen 5 as a novel therapeutic target in pancreatic ductal adenocarcinoma

Abstract

We provide evidence that a member of the human Schlafen (SLFN) family of proteins, SLFN5, is overexpressed in human pancreatic ductal adenocarcinoma (PDAC). Targeted deletion of SLFN5 results in decreased PDAC cell proliferation and suppresses PDAC tumorigenesis in in vivo PDAC models. Importantly, high expression levels of SLFN5 correlate with worse outcomes in PDAC patients, implicating SLFN5 in the pathophysiology of PDAC that leads to poor outcomes. Our studies establish novel regulatory effects of SLFN5 on cell cycle progression through binding/blocking of the transcriptional repressor E2F7, promoting transcription of key genes that stimulate S phase progression. Together, our studies suggest an essential role for SLFN5 in PDAC and support the potential for developing new therapeutic approaches for the treatment of pancreatic cancer through SLFN5 targeting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SLFN5 is overexpressed in human pancreatic adenocarcinoma tumors.
Fig. 2: Elevated expression of SLFN5 mRNA in pancreatic cancer patient tissues correlates with poor overall survival.
Fig. 3: Loss of SLFN5 reduces pancreatic cancer cell viability in vitro.
Fig. 4: Identification of E2F7 interaction with SLFN5.
Fig. 5: Effects of loss of SLFN5 on cell cycle progression.
Fig. 6: Loss of SLFN5 inhibits tumor growth and prolongs survival in an orthotopic pancreatic cancer xenograft mouse model.
Fig. 7: Proposed model for the role of SLFN5 in pancreatic cancer.

Similar content being viewed by others

References

  1. Mavrommatis E, Fish EN, Platanias LC. The schlafen family of proteins and their regulation by interferons. J Interferon Cytokine Res. 2013;33:206–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu F, Zhou P, Wang Q, Zhang M, Li D. The Schlafen family: complex roles in different cell types and virus replication. Cell Biol Int. 2018;42:2–8.

    Article  CAS  PubMed  Google Scholar 

  3. Soper A, Kimura I, Nagaoka S, Konno Y, Yamamoto K, Koyanagi Y, et al. Type I Interferon Responses by HIV-1 Infection: Association with Disease Progression and Control. Front Immunol. 2017;8:1823.

    Article  PubMed  CAS  Google Scholar 

  4. Fletcher SJ, Johnson B, Lowe GC, Bem D, Drake S, Lordkipanidze M, et al. SLFN14 mutations underlie thrombocytopenia with excessive bleeding and platelet secretion defects. J Clin Investig. 2015;125:3600–5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Xia Z, Liu Q, Berger CT, Keenan BT, Kaliszewska A, Cheney PC, et al. A 17q12 allele is associated with altered NK cell subsets and function. J Immunol. 2012;188:3315–22.

    Article  CAS  PubMed  Google Scholar 

  6. Seong RK, Seo SW, Kim JA, Fletcher SJ, Morgan NV, Kumar M, et al. Schlafen 14 (SLFN14) is a novel antiviral factor involved in the control of viral replication. Immunobiology. 2017;222:979–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li M, Kao E, Gao X, Sandig H, Limmer K, Pavon-Eternod M, et al. Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature. 2012;491:125–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Razzak M. Genetics: Schlafen 11 naturally blocks HIV. Nat Rev Urol. 2012;9:605.

    Article  PubMed  Google Scholar 

  9. Arslan AD, Sassano A, Saleiro D, Lisowski P, Kosciuczuk EM, Fischietti M, et al. Human SLFN5 is a transcriptional co-repressor of STAT1-mediated interferon responses and promotes the malignant phenotype in glioblastoma. Oncogene. 2017;36:6006–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fischietti M, Arslan AD, Sassano A, Saleiro D, Majchrzak-Kita B, Ebine K, et al. Slfn2 Regulates Type I Interferon Responses by Modulating the NF-kappaB Pathway. Mol Cell Biol. 2018;38:e00053–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Katsoulidis E, Carayol N, Woodard J, Konieczna I, Majchrzak-Kita B, Jordan A, et al. Role of Schlafen 2 (SLFN2) in the generation of interferon alpha-induced growth inhibitory responses. J Biol Chem. 2009;284:25051–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Katsoulidis E, Mavrommatis E, Woodard J, Shields MA, Sassano A, Carayol N, et al. Role of interferon {alpha} (IFN{alpha})-inducible Schlafen-5 in regulation of anchorage-independent growth and invasion of malignant melanoma cells. J Biol Chem. 2010;285:40333–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mavrommatis E, Arslan AD, Sassano A, Hua Y, Kroczynska B, Platanias LC. Expression and regulatory effects of murine Schlafen (Slfn) genes in malignant melanoma and renal cell carcinoma. J Biol Chem. 2013;288:33006–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sassano A, Mavrommatis E, Arslan AD, Kroczynska B, Beauchamp EM, Khuon S, et al. Human Schlafen 5 (SLFN5) Is a Regulator of Motility and Invasiveness of Renal Cell Carcinoma Cells. Mol Cell Biol. 2015;35:2684–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iacobuzio-Donahue CA, Maitra A, Olsen M, Lowe AW, van Heek NT, Rosty C, et al. Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol. 2003;162:1151–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Badea L, Herlea V, Dima SO, Dumitrascu T, Popescu I. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia. Hepatogastroenterology. 2008;55:2016–27.

    CAS  PubMed  Google Scholar 

  17. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia. 2007;9:166–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen DT, Davis-Yadley AH, Huang PY, Husain K, Centeno BA, Permuth-Wey J, et al. Prognostic Fifteen-Gene Signature for Early Stage Pancreatic Ductal Adenocarcinoma. PLoS ONE. 2015;10:e0133562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Grimont A, Pinho AV, Cowley MJ, Augereau C, Mawson A, Giry-Laterriere M, et al. SOX9 regulates ERBB signalling in pancreatic cancer development. Gut. 2015;64:1790–9.

    Article  CAS  PubMed  Google Scholar 

  20. Cancer Genome Atlas Research Network. Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell. 2017;32:185–203 e113.

    Article  CAS  Google Scholar 

  21. Back SA, Khan R, Gan X, Rosenberg PA, Volpe JJ. A new Alamar Blue viability assay to rapidly quantify oligodendrocyte death. J Neurosci Methods. 1999;91:47–54.

    Article  CAS  PubMed  Google Scholar 

  22. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.

    Article  CAS  PubMed  Google Scholar 

  23. Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17:313–9.

    Article  CAS  PubMed  Google Scholar 

  24. Lee CJ, Dosch J, Simeone DM. Pancreatic cancer stem cells. J Clin Oncol. 2008;26:2806–12.

    Article  PubMed  Google Scholar 

  25. Di Carlo C, Brandi J, Cecconi D. Pancreatic cancer stem cells: perspectives on potential therapeutic approaches of pancreatic ductal adenocarcinoma. World J Stem Cells. 2018;10:172–82.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen HZ, Tsai SY, Leone G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer. 2009;9:785–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Di Stefano L, Jensen MR, Helin K. E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes. EMBO J. 2003;22:6289–98.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Westendorp B, Mokry M, Groot Koerkamp MJ, Holstege FC, Cuppen E, de Bruin A. E2F7 represses a network of oscillating cell cycle genes to control S-phase progression. Nucleic Acids Res. 2012;40:3511–23.

    Article  CAS  PubMed  Google Scholar 

  29. Thurlings I, Martinez-Lopez LM, Westendorp B, Zijp M, Kuiper R, Tooten P, et al. Synergistic functions of E2F7 and E2F8 are critical to suppress stress-induced skin cancer. Oncogene. 2017;36:829–39.

    Article  CAS  PubMed  Google Scholar 

  30. Petropoulos M, Champeris Tsaniras S, Taraviras S, Lygerou Z. Replication Licensing Aberrations, Replication Stress, and Genomic Instability. Trends Biochem Sci. 2019;44:752–64.

    Article  CAS  PubMed  Google Scholar 

  31. Murray AW. Recycling the cell cycle: cyclins revisited. Cell. 2004;116:221–34.

    Article  CAS  PubMed  Google Scholar 

  32. Joukov V, De Nicolo A. Aurora-PLK1 cascades as key signaling modules in the regulation of mitosis. Sci Signal. 2018;11:eaar4195.

    Article  PubMed  CAS  Google Scholar 

  33. Wan G, Liu Y, Zhu J, Guo L, Li C, Yang Y, et al. SLFN5 suppresses cancer cell migration and invasion by inhibiting MT1-MMP expression via AKT/GSK-3beta/beta-catenin pathway. Cell Signal. 2019;59:1–12.

    Article  CAS  PubMed  Google Scholar 

  34. Companioni Napoles O, Tsao AC, Sanz-Anquela JM, Sala N, Bonet C, Pardo ML, et al. SCHLAFEN 5 expression correlates with intestinal metaplasia that progresses to gastric cancer. J Gastroenterol. 2017;52:39–49.

    Article  CAS  PubMed  Google Scholar 

  35. Guo L, Liu Z, Tang X. Overexpression of SLFN5 induced the epithelial-mesenchymal transition in human lung cancer cell line A549 through beta-catenin/Snail/E-cadherin pathway. Eur J Pharm. 2019;862:172630.

    Article  CAS  Google Scholar 

  36. Stewart ZA, Westfall MD, Pietenpol JA. Cell-cycle dysregulation and anticancer therapy. Trends Pharm Sci. 2003;24:139–45.

    Article  CAS  PubMed  Google Scholar 

  37. Weinert T, Lydall D. Cell cycle checkpoints, genetic instability and cancer. Semin Cancer Biol. 1993;4:129–40.

    CAS  PubMed  Google Scholar 

  38. Brown M, Zhang W, Yan D, Kenath R, Le L, Wang H, et al. The role of survivin in the progression of pancreatic ductal adenocarcinoma (PDAC) and a novel survivin-targeted therapeutic for PDAC. PLoS ONE. 2020;15:e0226917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chung S, Vail P, Witkiewicz AK, Knudsen ES. Coordinately Targeting Cell-Cycle Checkpoint Functions in Integrated Models of Pancreatic Cancer. Clin Cancer Res. 2019;25:2290–304.

    Article  CAS  PubMed  Google Scholar 

  40. Kent LN, Rakijas JB, Pandit SK, Westendorp B, Chen HZ, Huntington JT, et al. E2f8 mediates tumor suppression in postnatal liver development. J Clin Investig. 2016;126:2955–69.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li J, Ran C, Li E, Gordon F, Comstock G, Siddiqui H, et al. Synergistic function of E2F7 and E2F8 is essential for cell survival and embryonic development. Dev Cell. 2008;14:62–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mitxelena J, Apraiz A, Vallejo-Rodriguez J, Malumbres M, Zubiaga AM. E2F7 regulates transcription and maturation of multiple microRNAs to restrain cell proliferation. Nucleic Acids Res. 2016;44:5557–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Beauchamp EM, Abedin SM, Radecki SG, Fischietti M, Arslan AD, Blyth GT, et al. Identification and targeting of novel CDK9 complexes in acute myeloid leukemia. Blood. 2019;133:1171–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goswami CP, Nakshatri H. PROGgeneV2: enhancements on the existing database. BMC Cancer. 2014;14:970.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Northwestern University’s Pathology Core Facility, the Flow Cytometry Core Facility, and the Proteomics Center of Excellence Core Facility for assistance.

Funding

National Institutes of Health [R01-NS113352, R01-CA77816, R01-CA121192]; Department of Veterans Affairs [I01-CX000916]

Author information

Authors and Affiliations

Authors

Contributions

MF, FE, ADA and LCP designed research; MF, FE, GTB, WMM, CVO, REP, CL, EMK, LS and WQ performed research; MF, FE, CL, DS, EMB, DV, GY, WQ, ENF and LCP analyzed data; MF, FE, DS, EMB, ENF and LCP wrote and/or edited the paper; GY, MSL and LCP supervised the study.

Corresponding author

Correspondence to Leonidas C. Platanias.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischietti, M., Eckerdt, F., Blyth, G.T. et al. Schlafen 5 as a novel therapeutic target in pancreatic ductal adenocarcinoma. Oncogene 40, 3273–3286 (2021). https://doi.org/10.1038/s41388-021-01761-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01761-1

Search

Quick links