Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A molecular subtype of colorectal cancers initiates independently of epidermal growth factor receptor and has an accelerated growth rate mediated by IL10-dependent anergy

Abstract

Although epidermal growth factor receptor (EGFR)-targeted therapies are approved for colorectal cancer (CRC) treatment, only 15% of CRC patients respond to EGFR inhibition. Here, we show that colorectal cancers (CRC) can initiate and grow faster through an EGFR-independent mechanism, irrespective of the presence of EGFR, in two different mouse models using tissue-specific ablation of Egfr. The growth benefit in the absence of EGFR is also independent of Kras status. An EGFR-independent gene expression signature, also observed in human CRCs, revealed that anergy-inducing genes are overexpressed in EGFR-independent polyps, suggesting increased infiltration of anergic lymphocytes promotes an accelerated growth rate that is partially caused by escape from cell-mediated immune responses. Many genes in the EGFR-independent gene expression signature are downstream targets of interleukin 10 receptor alpha (IL10RA). We further show that IL10 is detectable in serum from mice with EGFR-independent colon polyps. Using organoids in vitro and Src ablation in vivo, we show that IL10 contributes to growth of EGFR-independent CRCs, potentially mediated by the well-documented role of SRC in IL10 signaling. Based on these data, we show that the combination of an EGFR inhibitor with an anti-IL10 neutralizing antibody results in decreased cell proliferation in organoids and in decreased polyp size in pre-clinical models harboring EGFR-independent CRCs, providing a new therapeutic intervention for CRCs resistant to EGFR inhibitor therapies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: EGFR-independent intestinal and colonic adenoma development.
Fig. 2: IL10 signaling activation, in EGFR-independent colon polyps, increased infiltrating immune cells, especially M2-type macrophages.
Fig. 3: Effect of IL10 in cell proliferation in colon organoids.
Fig. 4: Anti-IL10 neutralizing antibody treatment.
Fig. 5: Proposed EGFR-independent mechanism of colorectal cancer progression.

Data availability

The datasets supporting the conclusions of this article are available within the article, its supplemental files, and from the corresponding author upon request. The high-throughput sequencing data are deposited in GEO.

References

  1. 1.

    Masui H, Kawamoto T, Sato JD, Wolf B, Sato G, Mendelsohn J. Growth inhibition of human tumor cells in athymic mice by anti-epidermal growth factor receptor monoclonal antibodies. Cancer Res. 1984;44:1002–7.

    CAS  PubMed  Google Scholar 

  2. 2.

    Martinelli E, De Palma R, Orditura M, De Vita F, Ciardiello F. Anti-epidermal growth factor receptor monoclonal antibodies in cancer therapy. Clin Exp Immunol. 2009;158:1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Yang YH, Lin JK, Chen WS, Lin TC, Yang SH, Jiang JK, et al. Comparison of cetuximab to bevacizumab as the first-line bio-chemotherapy for patients with metastatic colorectal cancer: superior progression-free survival is restricted to patients with measurable tumors and objective tumor response-a retrospective study. J Cancer Res Clin Oncol. 2014;140:1927–36.

    CAS  PubMed  Google Scholar 

  4. 4.

    Martins M, Mansinho A, Cruz-Duarte R, Martins SL, Costa L. Anti-EGFR therapy to treat metastatic colorectal cancer: not for all. Adv Exp Med Biol. 2018;1110:113–31.

    CAS  PubMed  Google Scholar 

  5. 5.

    De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11:753–62.

    PubMed  Google Scholar 

  6. 6.

    De Roock W, De Vriendt V, Normanno N, Ciardiello F, Tejpar S. KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol. 2011;12:594–603.

    PubMed  Google Scholar 

  7. 7.

    Karapetis CS, Jonker D, Daneshmand M, Hanson JE, O’Callaghan CJ, Marginean C, et al. PIK3CA, BRAF, and PTEN status and benefit from cetuximab in the treatment of advanced colorectal cancer-results from NCIC CTG/AGITG CO.17. Clin Cancer Res. 2014;20:744–53.

    CAS  PubMed  Google Scholar 

  8. 8.

    Roberts RB, Min L, Washington MK, Olsen SJ, Settle SH, Coffey RJ, et al. Importance of epidermal growth factor receptor signaling in establishment of adenomas and maintenance of carcinomas during intestinal tumorigenesis. Proc Natl Acad Sci USA. 2002;99:1521–6.

    CAS  PubMed  Google Scholar 

  9. 9.

    Torrance CJ, Jackson PE, Montgomery E, Kinzler KW, Vogelstein B, Wissner A, et al. Combinatorial chemoprevention of intestinal neoplasia. Nat Med. 2000;6:1024–8.

    CAS  PubMed  Google Scholar 

  10. 10.

    Ren J, Sui H, Fang F, Li Q, Li B. The application of Apc(Min/+) mouse model in colorectal tumor researches. J Cancer Res Clin Oncol. 2019;145:1111–22.

    CAS  PubMed  Google Scholar 

  11. 11.

    Jackstadt R, Sansom OJ. Mouse models of intestinal cancer. J Pathol. 2016;238:141–51.

    PubMed  Google Scholar 

  12. 12.

    Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86:1065–73.

    CAS  PubMed  Google Scholar 

  13. 13.

    Parseghian CM, Napolitano S, Loree JM, Kopetz S. Mechanisms of innate and acquired resistance to anti-EGFR therapy: a review of current knowledge with a focus on rechallenge therapies. Clin Cancer Res. 2019;25:6899–908.

  14. 14.

    Putoczki TL, Thiem S, Loving A, Busuttil RA, Wilson NJ, Ziegler PK, et al. Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell. 2013;24:257–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Wolk K, Kunz S, Asadullah K, Sabat R. Cutting edge: immune cells as sources and targets of the IL-10 family members? J Immunol. 2002;168:5397–402.

    CAS  PubMed  Google Scholar 

  16. 16.

    Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med. 1989;170:2081–95.

    CAS  PubMed  Google Scholar 

  17. 17.

    Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19:683–765.

    CAS  PubMed  Google Scholar 

  18. 18.

    Jackute J, Zemaitis M, Pranys D, Sitkauskiene B, Miliauskas S, Vaitkiene S, et al. Distribution of M1 and M2 macrophages in tumor islets and stroma in relation to prognosis of non-small cell lung cancer. BMC Immunol. 2018;19:3.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Lee TC, Threadgill DW. Generation and validation of mice carrying a conditional allele of the epidermal growth factor receptor. Genesis. 2009;47:85–92.

    CAS  PubMed  Google Scholar 

  20. 20.

    Schumacher D, Andrieux G, Boehnke K, Keil M, Silvestri A, Silvestrov M, et al. Heterogeneous pathway activation and drug response modelled in colorectal-tumor-derived 3D cultures. PLoS Genet. 2019;15:e1008076.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Zhao S, Wu D, Wu P, Wang Z, Huang J. Serum IL-10 predicts worse outcome in cancer patients: a meta-analysis. PLoS One. 2015;10:e0139598.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Mager LF, Wasmer MH, Rau TT, Krebs P. Cytokine-induced modulation of colorectal cancer. Front Oncol. 2016;6:96.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Saqib U, Sarkar S, Suk K, Mohammad O, Baig MS, Savai R. Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget. 2018;9:17937–50.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Herbeuval JP, Lelievre E, Lambert C, Dy M, Genin C. Recruitment of STAT3 for production of IL-10 by colon carcinoma cells induced by macrophage-derived IL-6. J Immunol. 2004;172:4630–6.

    CAS  PubMed  Google Scholar 

  25. 25.

    Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl J Med. 2004;350:2129–39.

    CAS  PubMed  Google Scholar 

  26. 26.

    Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–1500.

    CAS  PubMed  Google Scholar 

  27. 27.

    Pao W, Miller VA, Venkatraman E, Kris MG. Predicting sensitivity of non-small-cell lung cancer to gefitinib: is there a role for P-Akt? J Natl Cancer Inst. 2004;96:1117–9.

    PubMed  Google Scholar 

  28. 28.

    Troiani T, Martinelli E, Napolitano S, Vitagliano D, Ciuffreda LP, Costantino S, et al. Increased TGF-alpha as a mechanism of acquired resistance to the anti-EGFR inhibitor cetuximab through EGFR-MET interaction and activation of MET signaling in colon cancer cells. Clin Cancer Res. 2013;19:6751–65.

    CAS  PubMed  Google Scholar 

  29. 29.

    Chen L, Shi Y, Zhu X, Guo W, Zhang M, Che Y, et al. IL10 secreted by cancerassociated macrophages regulates proliferation and invasion in gastric cancer cells via cMet/STAT3 signaling. Oncol Rep. 2019;42:595–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Hsu TI, Wang YC, Hung CY, Yu CH, Su WC, Chang WC, et al. Positive feedback regulation between IL10 and EGFR promotes lung cancer formation. Oncotarget. 2016;7:20840–54.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Warmuth M, Damoiseaux R, Liu Y, Fabbro D, Gray N. SRC family kinases: potential targets for the treatment of human cancer and leukemia. Curr Pharm Des. 2003;9:2043–59.

    CAS  PubMed  Google Scholar 

  32. 32.

    Moran AE, Hunt DH, Javid SH, Redston M, Carothers AM, Bertagnolli MM. Apc deficiency is associated with increased Egfr activity in the intestinal enterocytes and adenomas of C57BL/6J-Min/+ mice. J Biol Chem. 2004;279:43261–72.

    CAS  PubMed  Google Scholar 

  33. 33.

    Golas JM, Lucas J, Etienne C, Golas J, Discafani C, Sridharan L, et al. SKI-606, a Src/Abl inhibitor with in vivo activity in colon tumor xenograft models. Cancer Res. 2005;65:5358–64.

    CAS  PubMed  Google Scholar 

  34. 34.

    Pizarro TT, Arseneau KO, Cominelli F. Lessons from genetically engineered animal models XI. Novel mouse models to study pathogenic mechanisms of Crohn’s disease. Am J Physiol Gastrointest Liver Physiol. 2000;278:G665–669.

    CAS  PubMed  Google Scholar 

  35. 35.

    Kamizato M, Nishida K, Masuda K, Takeo K, Yamamoto Y, Kawai T, et al. Interleukin 10 inhibits interferon gamma- and tumor necrosis factor alpha-stimulated activation of NADPH oxidase 1 in human colonic epithelial cells and the mouse colon. J Gastroenterol. 2009;44:1172–84.

    CAS  PubMed  Google Scholar 

  36. 36.

    Edin S, Wikberg ML, Dahlin AM, Rutegard J, Oberg A, Oldenborg PA, et al. The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS One. 2012;7:e47045.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Moser AR, Mattes EM, Dove WF, Lindstrom MJ, Haag JD, Gould MN. ApcMin, a mutation in the murine Apc gene, predisposes to mammary carcinomas and focal alveolar hyperplasias. Proc Natl Acad Sci USA. 1993;90:8977–81.

    CAS  PubMed  Google Scholar 

  38. 38.

    Soriano P, Montgomery C, Geske R, Bradley A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell. 1991;64:693–702.

    CAS  PubMed  Google Scholar 

  39. 39.

    el Marjou F, Janssen KP, Chang BH, Li M, Hindie V, Chan L, et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis. 2004;39:186–93.

    CAS  PubMed  Google Scholar 

  40. 40.

    Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 2001;15:3243–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Kuraguchi M, Wang XP, Bronson RT, Rothenberg R, Ohene-Baah NY, Lund JJ, et al. Adenomatous polyposis coli (APC) is required for normal development of skin and thymus. PLoS Genet. 2006;2:e146.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Becker C, Fantini MC, Wirtz S, Nikolaev A, Kiesslich R, Lehr HA, et al. In vivo imaging of colitis and colon cancer development in mice using high resolution chromoendoscopy. Gut. 2005;54:950–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Hung KE, Maricevich MA, Richard LG, Chen WY, Richardson MP, Kunin A, et al. Development of a mouse model for sporadic and metastatic colon tumors and its use in assessing drug treatment. Proc Natl Acad Sci USA. 2010;107:1565–70.

    CAS  PubMed  Google Scholar 

  44. 44.

    Paul Olson TJ, Hadac JN, Sievers CK, Leystra AA, Deming DA, Zahm CD, et al. Dynamic tumor growth patterns in a novel murine model of colorectal cancer. Cancer Prev Res. 2014;7:105–13.

    Google Scholar 

  45. 45.

    Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141:1762–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Kim D, Landmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–U121.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Mounir M, Lucchetta M, Silva TC, Olsen C, Bontempi G, Chen X, et al. New functionalities in the TCGAbiolinks package for the study and integration of cancer data from GDC and GTEx. PLoS Comput Biol. 2019;15:e1006701.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by fellowships F31 AT002835 (ESR), F32 CA168301 (RML), T32 OD011083 (AP), and by NIH grants R01 CA092479 (DWT), NIEHS P30 ES029067, and the Tom and Jean McMullin Chair of Genetics (DWT). We thank members of the Threadgill lab for constructive criticism on manuscript drafts; Dr. Andrew Hillhouse and the Texas A&M Institute for Genome Sciences and Society’s (TIGSS) Molecular Genomics Core for RNAseq data generation; and Kristen Hanneman for mouse husbandry. The results published here are in whole or part based upon data generated by The Cancer Genome Atlas managed by the NCI and NHGRI. Information about TCGA can be found at http://cancergenome.nih.gov.

Author information

Affiliations

Authors

Contributions

Conceptualization: CMR, MY, ESR, and DWT. Methodology: CMR, MY, ESR, RML, JJ-A, KRA, EJB, EB, and DWT. Pathology: AP. Data analysis: CMR, ESR, KK, and DWT. Writing-original draft: CMR and DWT. Writing-reviewing and editing: MY, ESR, JJ-A., KRA, EJB, EB, and RML. Funding acquisition: DWT, ESR, and RML.

Corresponding author

Correspondence to David W. Threadgill.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mantilla-Rojas, C., Yu, M., Rinella, E.S. et al. A molecular subtype of colorectal cancers initiates independently of epidermal growth factor receptor and has an accelerated growth rate mediated by IL10-dependent anergy. Oncogene 40, 3047–3059 (2021). https://doi.org/10.1038/s41388-021-01752-2

Download citation

Search

Quick links