Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

CTGF regulates cell proliferation, migration, and glucose metabolism through activation of FAK signaling in triple-negative breast cancer


Connective tissue growth factor (CTGF), also known as CCN2, is a member of the CCN protein family of secreted proteins with roles in diverse biological processes. CTGF regulates biological functions such as cell proliferation, migration, adhesion, wound healing, and angiogenesis. In this study, we demonstrate a mechanistic link between CTGF and enhanced aerobic glycolysis in triple-negative breast cancer (TNBC). We found that CTGF is overexpressed in TNBC and high CTGF expression is correlated with a poor prognosis. Also, CTGF was required for in vivo tumorigenesis and in vitro proliferation, migration, invasion, and adhesion of TNBC cells. Our results indicate that extracellular CTGF binds directly to integrin αvβ3, activating the FAK/Src/NF-κB p65 signaling axis, which results in transcriptional upregulation of Glut3. Neutralization of CTGF decreased cell proliferation, migration, and invasion through downregulation of Glut3-mediated glycolytic phenotypes. Overall, our work suggests a novel function for CTGF as a modulator of cancer metabolism, indicating that CTGF is a potential therapeutic target in TNBC.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: CTGF is overexpressed in triple-negative breast cancer.
Fig. 2: CTGF regulates cell proliferation, migration, and adhesion.
Fig. 3: CTGF promotes aerobic glycolysis.
Fig. 4: CTGF knockdown results in decreased Glut3 expression.
Fig. 5: CTGF induces Glut3 expression through integrin αvβ3 signaling.
Fig. 6: CTGF/NF-κB p65/Glut3 signaling is required for enhanced proliferation of TNBC cells.
Fig. 7: CTGF/NF-κB p65/Glut3 signaling confers cell migration and invasion.


  1. 1.

    Bradham DM, Igarashi A, Potter RL, Grotendorst GR. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol. 1991;114:1285–94.

    CAS  PubMed  Google Scholar 

  2. 2.

    Leask A, Abraham DJ. All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci. 2006;119:4803–10.

    CAS  PubMed  Google Scholar 

  3. 3.

    Hall-Glenn F, Lyons KM. Roles for CCN2 in normal physiological processes. Cell Mol Life Sci. 2011;68:3209–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Lipson KE, Wong C, Teng Y, Spong S. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenes Tissue Repair. 2012;5:S24.

    Google Scholar 

  5. 5.

    Jun JI, Lau LF. Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov. 2011;10:945–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Kim H, Son S, Shin I. Role of the CCN protein family in cancer. BMB Rep. 2018;51:486–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    PubMed  Google Scholar 

  8. 8.

    Bosch A, Eroles P, Zaragoza R, Vina JR, Lluch A. Triple-negative breast cancer: molecular features, pathogenesis, treatment and current lines of research. Cancer Treat Rev. 2010;36:206–15.

    CAS  PubMed  Google Scholar 

  9. 9.

    Aysola K, Desai A, Welch C, Xu J, Qin Y, Reddy V. et al. Triple negative breast cancer - an overview. Hereditary Genet. 2013;2013:001.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016;41:211–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Xie D, Nakachi K, Wang H, Elashoff R, Koeffler HP. Elevated levels of connective tissue growth factor, WISP-1, and CYR61 in primary breast cancers associated with more advanced features. Cancer Res. 2001;61:8917–23.

    CAS  PubMed  Google Scholar 

  12. 12.

    Chen PS, Wang MY, Wu SN, Su JL, Hong CC, Chuang SE, et al. CTGF enhances the motility of breast cancer cells via an integrin-alphavbeta3-ERK1/2-dependent S100A4-upregulated pathway. J Cell Sci. 2007;120:2053–65.

    CAS  PubMed  Google Scholar 

  13. 13.

    Wang MY, Chen PS, Prakash E, Hsu HC, Huang HY, Lin MT, et al. Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and cIAP1. Cancer Res. 2009;69:3482–91.

    CAS  PubMed  Google Scholar 

  14. 14.

    Sun X, Wang M, Wang M, Yu X, Guo J, Sun T, et al. Metabolic reprogramming in triple-negative breast cancer. Front Oncol. 2020;10:428.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Geiger B, Bershadsky A, Pankov R, Yamada KM. Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nat Rev Mol Cell Biol. 2001;2:793–805.

    CAS  PubMed  Google Scholar 

  16. 16.

    Tai YL, Chen LC, Shen TL. Emerging roles of focal adhesion kinase in cancer. Biomed Res Int. 2015;2015:690690.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Wozniak MA, Modzelewska K, Kwong L, Keely PJ. Focal adhesion regulation of cell behavior. Biochim Biophys Acta. 2004;1692:103–19.

    CAS  PubMed  Google Scholar 

  18. 18.

    Lee HS, Moon C, Lee HW, Park EM, Cho MS, Kang JL. Src tyrosine kinases mediate activations of NF-kappaB and integrin signal during lipopolysaccharide-induced acute lung injury. J Immunol. 2007;179:7001–11.

    CAS  PubMed  Google Scholar 

  19. 19.

    Lluis JM, Buricchi F, Chiarugi P, Morales A, Fernandez-Checa JC. Dual role of mitochondrial reactive oxygen species in hypoxia signaling: activation of nuclear factor-{kappa}B via c-SRC and oxidant-dependent cell death. Cancer Res. 2007;67:7368–77.

    CAS  PubMed  Google Scholar 

  20. 20.

    Kawauchi K, Araki K, Tobiume K, Tanaka N. p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol. 2008;10:611–8.

    CAS  PubMed  Google Scholar 

  21. 21.

    Zha X, Hu Z, Ji S, Jin F, Jiang K, Li C, et al. NFkappaB up-regulation of glucose transporter 3 is essential for hyperactive mammalian target of rapamycin-induced aerobic glycolysis and tumor growth. Cancer Lett. 2015;359:97–106.

    CAS  PubMed  Google Scholar 

  22. 22.

    Watanabe M, Abe N, Oshikiri Y, Stanbridge EJ, Kitagawa T. Selective growth inhibition by glycogen synthase kinase-3 inhibitors in tumorigenic HeLa hybrid cells is mediated through NF-kappaB-dependent GLUT3 expression. Oncogenesis. 2012;1:e21.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Bennewith KL, Huang X, Ham CM, Graves EE, Erler JT, Kambham N, et al. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth. Cancer Res. 2009;69:775–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Braig S, Wallner S, Junglas B, Fuchshofer R, Bosserhoff AK. CTGF is overexpressed in malignant melanoma and promotes cell invasion and migration. Br J Cancer. 2011;105:231–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Garcia P, Leal P, Ili C, Brebi P, Alvarez H, Roa JC. Inhibition of connective tissue growth factor (CTGF/CCN2) in gallbladder cancer cells leads to decreased growth in vitro. Int J Exp Pathol. 2013;94:195–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3:537–49.

    CAS  Google Scholar 

  27. 27.

    Ladwa R, Pringle H, Kumar R, West K. Expression of CTGF and Cyr61 in colorectal cancer. J Clin Pathol. 2011;64:58–64.

    CAS  PubMed  Google Scholar 

  28. 28.

    Shakunaga T, Ozaki T, Ohara N, Asaumi K, Doi T, Nishida K, et al. Expression of connective tissue growth factor in cartilaginous tumors. Cancer. 2000;89:1466–73.

    CAS  PubMed  Google Scholar 

  29. 29.

    Wang G, Zhang W, Meng W, Liu J, Wang P, Lin S, et al. Expression and clinical significance of connective tissue growth factor in thyroid carcinomas. J Int Med Res. 2013;41:1214–20.

    PubMed  Google Scholar 

  30. 30.

    Welch MD, Greene WK, Kees UR. Hypomethylation of the CTGF gene locus is a common feature of paediatric pre-B acute lymphoblastic leukaemia. Br J Haematol. 2013;162:537–41.

    CAS  PubMed  Google Scholar 

  31. 31.

    Yang F, Tuxhorn JA, Ressler SJ, McAlhany SJ, Dang TD, Rowley DR. Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis. Cancer Res. 2005;65:8887–95.

    CAS  PubMed  Google Scholar 

  32. 32.

    Yin D, Chen W, O’Kelly J, Lu D, Ham M, Doan NB, et al. Connective tissue growth factor associated with oncogenic activities and drug resistance in glioblastoma multiforme. Int J Cancer. 2010;127:2257–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Shimo T, Nakanishi T, Nishida T, Asano M, Sasaki A, Kanyama M, et al. Involvement of CTGF, a hypertrophic chondrocyte-specific gene product, in tumor angiogenesis. Oncology. 2001;61:315–22.

    CAS  PubMed  Google Scholar 

  34. 34.

    Shimo T, Kubota S, Yoshioka N, Ibaragi S, Isowa S, Eguchi T, et al. Pathogenic role of connective tissue growth factor (CTGF/CCN2) in osteolytic metastasis of breast cancer. J Bone Min Res. 2006;21:1045–59.

    CAS  Google Scholar 

  35. 35.

    Chien W, O’Kelly J, Lu D, Leiter A, Sohn J, Yin D, et al. Expression of connective tissue growth factor (CTGF/CCN2) in breast cancer cells is associated with increased migration and angiogenesis. Int J Oncol. 2011;38:1741–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Lee HK, Bier A, Cazacu S, Finniss S, Xiang C, Twito H, et al. MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor. PLoS ONE. 2013;8:e54652.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Neesse A, Frese KK, Bapiro TE, Nakagawa T, Sternlicht MD, Seeley TW, et al. CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer. Proc Natl Acad Sci USA. 2013;110:12325–30.

    CAS  PubMed  Google Scholar 

  38. 38.

    Dornhofer N, Spong S, Bennewith K, Salim A, Klaus S, Kambham N, et al. Connective tissue growth factor-specific monoclonal antibody therapy inhibits pancreatic tumor growth and metastasis. Cancer Res. 2006;66:5816–27.

    PubMed  Google Scholar 

  39. 39.

    Kikuchi R, Tsuda H, Kanai Y, Kasamatsu T, Sengoku K, Hirohashi S, et al. Promoter hypermethylation contributes to frequent inactivation of a putative conditional tumor suppressor gene connective tissue growth factor in ovarian cancer. Cancer Res. 2007;67:7095–105.

    CAS  PubMed  Google Scholar 

  40. 40.

    Chen PP, Li WJ, Wang Y, Zhao S, Li DY, Feng LY, et al. Expression of Cyr61, CTGF, and WISP-1 correlates with clinical features of lung cancer. PLoS ONE. 2007;2:e534.

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Pille JY, Denoyelle C, Varet J, Bertrand JR, Soria J, Opolon P, et al. Anti-RhoA and anti-RhoC siRNAs inhibit the proliferation and invasiveness of MDA-MB-231 breast cancer cells in vitro and in vivo. Mol Ther. 2005;11:267–74.

    CAS  PubMed  Google Scholar 

  43. 43.

    Yoshida T, Zhang Y, Rivera Rosado LA, Chen J, Khan T, Moon SY, et al. Blockade of Rac1 activity induces G1 cell cycle arrest or apoptosis in breast cancer cells through downregulation of cyclin D1, survivin, and X-linked inhibitor of apoptosis protein. Mol Cancer Ther. 2010;9:1657–68.

    CAS  PubMed  Google Scholar 

  44. 44.

    Altenberg B, Greulich KO. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics. 2004;84:1014–20.

    CAS  PubMed  Google Scholar 

  45. 45.

    Han T, Kang D, Ji D, Wang X, Zhan W, Fu M, et al. How does cancer cell metabolism affect tumor migration and invasion? Cell Adh Migr. 2013;7:395–403.

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Wang X, Liu R, Qu X, Yu H, Chu H, Zhang Y, et al. alpha-Ketoglutarate-activated NF-kappaB signaling promotes compensatory glucose uptake and brain tumor development. Mol Cell. 2019;76:148–62.e147.

    CAS  PubMed  Google Scholar 

  47. 47.

    Londhe P, Yu PY, Ijiri Y, Ladner KJ, Fenger JM, London C, et al. Classical NF-kappaB metabolically reprograms sarcoma cells through regulation of hexokinase 2. Front Oncol. 2018;8:104.

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Han D, Wei W, Chen X, Zhang Y, Wang Y, Zhang J, et al. NF-kappaB/RelA-PKM2 mediates inhibition of glycolysis by fenofibrate in glioblastoma cells. Oncotarget. 2015;6:26119–28.

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Mauro C, Leow SC, Anso E, Rocha S, Thotakura AK, Tornatore L, et al. NF-kappaB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat Cell Biol. 2011;13:1272–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Adekola K, Rosen ST, Shanmugam M. Glucose transporters in cancer metabolism. Curr Opin Oncol. 2012;24:650–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Ancey PB, Contat C, Meylan E. Glucose transporters in cancer - from tumor cells to the tumor microenvironment. FEBS J. 2018;285:2926–43.

    CAS  PubMed  Google Scholar 

  52. 52.

    Krzeslak A, Wojcik-Krowiranda K, Forma E, Jozwiak P, Romanowicz H, Bienkiewicz A, et al. Expression of GLUT1 and GLUT3 glucose transporters in endometrial and breast cancers. Pathol Oncol Res. 2012;18:721–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Kuo M-H, Chang W-W, Yeh B-W, Chu Y-S, Lee Y-C, Lee H-T. Glucose transporter 3 is essential for the survival of breast cancer cells in the brain. Cells. 2019;8:1568.

    PubMed Central  Google Scholar 

Download references


This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korea government (MIST) (2019R1H1A2079999, 2020R1F1A1048616, 2020R1A6A3A13074546).

Financial Support

Grant source, National Research Foundation of Korea (NRF); Grant numbers (grant recipient), 2019R1H1A2079999 (Incheol Shin), 2020R1F1A1048616 (Incheol Shin), 2020R1A6A3A13074546 (Hyungjoo Kim).

Author information



Corresponding author

Correspondence to Incheol Shin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Son, S., Ko, Y. et al. CTGF regulates cell proliferation, migration, and glucose metabolism through activation of FAK signaling in triple-negative breast cancer. Oncogene 40, 2667–2681 (2021).

Download citation


Quick links