Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hepatic stellate cells promote intrahepatic cholangiocarcinoma progression via NR4A2/osteopontin/Wnt signaling axis

Abstract

Intrahepatic cholangiocarcinoma (ICC) is a highly fatal malignancy characterized by a vast amount of intra-tumoral fibroblasts. These fibroblasts are potentially implicated in maintaining the high aggressiveness of ICC, whereas its pro-cancer mechanisms remain scarcely reported. Here, by establishing co-culture models of ICC cells and hepatic stellate cells (HSCs), we identified that HSCs triggered the expression of nuclear receptor family 4 subgroup A member 2 (NR4A2), a transcription factor previously reported as a molecular switch between inflammation and cancer, in ICC cells. Functionally, NR4A2 promotes tumor proliferation, metastatic potentiality and represents an independent prognostic indicator for overall survival in ICC patients. Mechanistically, NR4A2 upregulates osteopontin (OPN) expression through transcriptional activation and thereby augments the activity of Wnt/β-catenin signaling. Intriguingly, in the context of co-culture, vascular endothelial growth factor (VEGF), a previously proved NR4A2 stimulus, not only enhances NR4A2 expression, but also can be blunted by the interference of the NR4A2-OPN axis. Altogether, this study suggests the NR4A2/OPN/Wnt signaling axis to be a pivotal executor of HSC-instigated cancer-promoting roles in ICC, and the NR4A2/OPN/VEGF positive feedback loop may help to reinforce the effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Establishment of direct co-culture models and altered signaling pathways exhibited by HSCs-primed ICCs.
Fig. 2: NR4A2 is the most sensitive responder towards stimulation of HSCs among the NR4A family members.
Fig. 3: NR4A2 promotes tumor proliferation, migration, and invasion.
Fig. 4: HSCs-induced epithelial-mesenchymal transition (EMT) is partially attributed to NR4A2-medicated osteopontin (OPN) upregulation.
Fig. 5: NR4A2-OPN axis activates Wnt/β-catenin signaling pathway.
Fig. 6: PGE2 and VEGF are responsible for HSC-instigated NR4A2 upregulation.
Fig. 7: Proposed model of HSCs promote ICC progression via NR4A2/OPN/Wnt signaling axis.

Similar content being viewed by others

References

  1. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16:582–98.

    CAS  PubMed  Google Scholar 

  2. Smyth MJ, Ngiow SF, Ribas A, Teng MW. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol. 2016;13:143–58.

    CAS  PubMed  Google Scholar 

  3. Sanmamed MF, Chen L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell. 2018;175:313–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015;162:1229–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cuiffo BG, Campagne A, Bell GW, Lembo A, Orso F, Lien EC, et al. MSC-regulated microRNAs converge on the transcription factor FOXP2 and promote breast cancer metastasis. Cell Stem Cell. 2014;15:762–74.

    CAS  PubMed  Google Scholar 

  6. Bertuccio P, Malvezzi M, Carioli G, Hashim D, Boffetta P, El-Serag HB, et al. Global trends in mortality from intrahepatic and extrahepatic cholangiocarcinoma. J Hepatol. 2019;71:104–14.

    PubMed  Google Scholar 

  7. Saha SK, Zhu AX, Fuchs CS, Brooks GA. Forty-year trends in cholangiocarcinoma incidence in the u.s.: intrahepatic disease on the rise. oncologist. 2016;21:594–9.

    PubMed  PubMed Central  Google Scholar 

  8. Bridgewater J, Galle PR, Khan SA, Llovet JM, Park JW, Patel T, et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol. 2014;60:1268–89.

    PubMed  Google Scholar 

  9. Primrose JN, Fox RP, Palmer DH, Malik HZ, Prasad R, Mirza D. Capecitabine compared with observation in resected biliary tract cancer(BILCAP): a randomised, controlled, multicentre, phase 3 study. The Lancet Oncology. 2019;20:663–73.

    CAS  PubMed  Google Scholar 

  10. Capecitabine Extends Survival for Biliary Tract Cancer. Cancer Discov. 2017;7:OF1.

  11. Paule B, Herelle MO, Rage E, Ducreux M, Adam R, Guettier C, et al. Cetuximab plus gemcitabine-oxaliplatin (GEMOX) in patients with refractory advanced intrahepatic cholangiocarcinomas. Oncology. 2007;72:105–10.

    CAS  PubMed  Google Scholar 

  12. Sirica AE, Gores GJ, Groopman JD, Selaru FM, Strazzabosco M, Wei Wang X, et al. Intrahepatic cholangiocarcinoma: continuing challenges and translational advances. Hepatology. 2019;69:1803–15.

    PubMed  PubMed Central  Google Scholar 

  13. Coulouarn C, Clement B. Stellate cells and the development of liver cancer: therapeutic potential of targeting the stroma. J Hepatol. 2014;60:1306–9.

    CAS  PubMed  Google Scholar 

  14. Li L, Piontek K, Ishida M, Fausther M, Dranoff JA, Fu R. et al. Extracellular vesicles carry microRNA-195 to intrahepatic cholangiocarcinoma and improve survival in a rat model. Hepatology. 2017;65:501–14.

    CAS  PubMed  Google Scholar 

  15. Jing CY, Fu YP, Huang JL, Zhang MX, Yi Y, Gan W, et al. Prognostic nomogram based on histological characteristics of fibrotic tumor stroma in patients who underwent curative resection for intrahepatic cholangiocarcinoma. oncologist. 2018;23:1482–93.

    PubMed  PubMed Central  Google Scholar 

  16. Cheng JT, Deng YN, Yi HM, Wang GY, Fu BS, Chen WJ, et al. Hepatic carcinoma-associated fibroblasts induce IDO-producing regulatory dendritic cells through IL-6-mediated STAT3 activation. Oncogenesis. 2016;5:e198.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ji J, Eggert T, Budhu A, Forgues M, Takai A, Dang H, et al. Hepatic stellate cell and monocyte interaction contributes to poor prognosis in hepatocellular carcinoma. Hepatology. 2015;62:481–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cadamuro M, Nardo G, Indraccolo S, Dall’olmo L, Sambado L, Moserle L, et al. Platelet-derived growth factor-D and Rho GTPases regulate recruitment of cancer-associated fibroblasts in cholangiocarcinoma. Hepatology. 2013;58:1042–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gentilini A, Rombouts K, Galastri S, Caligiuri A, Mingarelli E, Mello T, et al. Role of the stromal-derived factor-1 (SDF-1)-CXCR4 axis in the interaction between hepatic stellate cells and cholangiocarcinoma. J Hepatol. 2012;57:813–20.

    PubMed  Google Scholar 

  20. Fingas CD, Bronk SF, Werneburg NW, Mott JL, Guicciardi ME, Cazanave SC, et al. Myofibroblast-derived PDGF-BB promotes Hedgehog survival signaling in cholangiocarcinoma cells. Hepatology. 2011;54:2076–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Okabe H, Beppu T, Hayashi H, Horino K, Masuda T, Komori H, et al. Hepatic stellate cells may relate to progression of intrahepatic cholangiocarcinoma. Ann surgical Oncol. 2009;16:2555–64.

    Google Scholar 

  22. Han Y, Cai H, Ma L, Ding Y, Tan X, Liu Y, et al. Nuclear orphan receptor NR4A2 confers chemoresistance and predicts unfavorable prognosis of colorectal carcinoma patients who received postoperative chemotherapy. Eur J Cancer. 2013;49:3420–30.

    CAS  PubMed  Google Scholar 

  23. McEvoy C, de Gaetano M, Giffney HE, Bahar B, Cummins EP, Brennan EP, et al. NR4A receptors differentially regulate NF-kappaB signaling in myeloid cells. Front Immunol. 2017;8:7.

    PubMed  PubMed Central  Google Scholar 

  24. Zhao D, Desai S, Zeng H. VEGF stimulates PKD-mediated CREB-dependent orphan nuclear receptor Nurr1 expression: role in VEGF-induced angiogenesis. International journal of cancer. J Int du Cancer. 2011;128:2602–12.

    CAS  Google Scholar 

  25. Crean D, Cummins EP, Bahar B, Mohan H, McMorrow JP, Murphy EP. Adenosine modulates NR4A orphan nuclear receptors to attenuate hyperinflammatory responses in monocytic cells. J Immunol. 2015;195:1436–48.

    CAS  PubMed  Google Scholar 

  26. Sekiya T, Kashiwagi I, Inoue N, Morita R, Hori S, Waldmann H, et al. The nuclear orphan receptor Nr4a2 induces Foxp3 and regulates differentiation of CD4+ T cells. Nat Commun. 2011;2:269.

    PubMed  PubMed Central  Google Scholar 

  27. Han YF, Cao GW. Role of nuclear receptor NR4A2 in gastrointestinal inflammation and cancers. World J Gastroenterol. 2012;18:6865–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mohan HM, Aherne CM, Rogers AC, Baird AW, Winter DC, Murphy EP. Molecular pathways: the role of NR4A orphan nuclear receptors in cancer. Clin Cancer Res. 2012;18:3223–8.

    CAS  PubMed  Google Scholar 

  29. Karki K, Li X, Jin UH, Mohankumar K, Zarei M, Michelhaugh SK, et al. Nuclear receptor 4A2 (NR4A2) is a druggable target for glioblastomas. J Neurooncol. 2020;146:25–39.

    CAS  PubMed  Google Scholar 

  30. Shigeishi H, Higashikawa K, Hatano H, Okui G, Tanaka F, Tran TT, et al. PGE(2) targets squamous cell carcinoma cell with the activated epidermal growth factor receptor family for survival against 5-fluorouracil through NR4A2 induction. Cancer Lett. 2011;307:227–36.

    CAS  PubMed  Google Scholar 

  31. Han Y, Cai H, Ma L, Ding Y, Tan X, Chang W, et al. Expression of orphan nuclear receptor NR4A2 in gastric cancer cells confers chemoresistance and predicts an unfavorable postoperative survival of gastric cancer patients with chemotherapy. Cancer. 2013;119:3436–45.

    CAS  PubMed  Google Scholar 

  32. Zagani R, Hamzaoui N, Cacheux W, de Reynies A, Terris B, Chaussade S, et al. Cyclooxygenase-2 inhibitors down-regulate osteopontin and Nr4A2-new therapeutic targets for colorectal cancers. Gastroenterology. 2009;137:1358–66 e1351-1353.

    CAS  PubMed  Google Scholar 

  33. Zheng Y, Zhou C, Yu XX, Wu C, Jia HL, Gao XM, et al. Osteopontin promotes metastasis of intrahepatic cholangiocarcinoma through recruiting MAPK1 and mediating Ser675 phosphorylation of beta-Catenin. Cell Death Dis. 2018;9:179.

    PubMed  PubMed Central  Google Scholar 

  34. Wu L, Amarachintha S, Xu J, Oley F Jr., Du W. Mesenchymal COX2-PG secretome engages NR4A-WNT signalling axis in haematopoietic progenitors to suppress anti-leukaemia immunity. Br J Haematol. 2018;183:445–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K. Cyclooxygenase-2 in cancer: a review. J Cell Physiol. 2019;234:5683–99.

    CAS  PubMed  Google Scholar 

  36. Li P, Shan JX, Chen XH, Zhang D, Su LP, Huang XY, et al. Epigenetic silencing of microRNA-149 in cancer-associated fibroblasts mediates prostaglandin E2/interleukin-6 signaling in the tumor microenvironment. Cell Res. 2015;25:588–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Akeson A, Herman A, Wiginton D, Greenberg J. Endothelial cell activation in a VEGF-A gradient: relevance to cell fate decisions. Microvasc Res. 2010;80:65–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Raja R, Kale S, Thorat D, Soundararajan G, Lohite K, Mane A, et al. Hypoxia-driven osteopontin contributes to breast tumor growth through modulation of HIF1alpha-mediated VEGF-dependent angiogenesis. Oncogene. 2014;33:2053–64.

    CAS  PubMed  Google Scholar 

  39. Ramchandani D, Weber GF. Interactions between osteopontin and vascular endothelial growth factor: Implications for cancer. Biochim Biophys Acta. 2015;1855:202–22.

    CAS  PubMed  Google Scholar 

  40. Chakraborty G, Jain S, Kundu GC. Osteopontin promotes vascular endothelial growth factor-dependent breast tumor growth and angiogenesis via autocrine and paracrine mechanisms. Cancer Res. 2008;68:152–61.

    CAS  PubMed  Google Scholar 

  41. Ahmed M, Sottnik JL, Dancik GM, Sahu D, Hansel DE, Theodorescu D, et al. An osteopontin/CD44 axis in RhoGDI2-mediated metastasis suppression. Cancer Cell. 2016;30:432–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Dai J, Peng L, Fan K, Wang H, Wei R, Ji G, et al. Osteopontin induces angiogenesis through activation of PI3K/AKT and ERK1/2 in endothelial cells. Oncogene. 2009;28:3412–22.

    CAS  PubMed  Google Scholar 

  43. Urtasun R, Lopategi A, George J, Leung TM, Lu Y, Wang X, et al. Osteopontin, an oxidant stress sensitive cytokine, up-regulates collagen-I via integrin alpha(V)beta(3) engagement and PI3K/pAkt/NFkappaB signaling. Hepatology. 2012;55:594–608.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kothari AN, Arffa ML, Chang V, Blackwell RH, Syn WK, Zhang J, Mi Z, Kuo PC. Osteopontin-A Master Regulator of Epithelial-Mesenchymal Transition. J Clin Med. 2016;5:39. https://doi.org/10.3390/jcm5040039.

    Article  CAS  PubMed Central  Google Scholar 

  45. Weber CE, Kothari AN, Wai PY, Li NY, Driver J, Zapf MA, et al. Osteopontin mediates an MZF1-TGF-beta1-dependent transformation of mesenchymal stem cells into cancer-associated fibroblasts in breast cancer. Oncogene. 2015;34:4821–33.

    CAS  PubMed  Google Scholar 

  46. Zhu Y, Yang J, Xu D, Gao XM, Zhang Z, Hsu JL, et al. Disruption of tumour-associated macrophage trafficking by the osteopontin-induced colony-stimulating factor-1 signalling sensitises hepatocellular carcinoma to anti-PD-L1 blockade. Gut. 2019;68:1653–66.

    CAS  PubMed  Google Scholar 

  47. Sulpice L, Rayar M, Desille M, Turlin B, Fautrel A, Boucher E, et al. Molecular profiling of stroma identifies osteopontin as an independent predictor of poor prognosis in intrahepatic cholangiocarcinoma. Hepatology. 2013;58:1992–2000.

    CAS  PubMed  Google Scholar 

  48. Lammi J, Huppunen J, Aarnisalo P. Regulation of the osteopontin gene by the orphan nuclear receptor NURR1 in osteoblasts. Mol Endocrinol.2004;18:1546–57.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China (NO.81772510; NO.81902419; NO.81902993; NO. 82072677, NO. 82072672); National Key Research and Development Program of China (NO.2017YFC0908101 and NO.2017YFC0908102); Research Programs of Science and Technology Commission Foundation of Shanghai (NO.18XD1401100); Medical and Health Key Programs of Science and Technology Plan of Xiamen (NO.3502Z20191105); 2020 Youth Talent Program of Obstetrics & Gynecology Hospital of Fudan University obtained by Dr. Yi-Peng Fu and Research and Development Program of Zhongshan Hospital, Fudan University (NO. 2020ZSFZ13, NO. 2019ZSFZ13, NO. 2018ZSFZ055, NO. ZSLC62, NO. ZHZS17, NO. 2019-275, NO. 2020-312, NO. 2021-353).

Author information

Authors and Affiliations

Authors

Contributions

Study design, drafting of the manuscript, study supervision, and obtaining funding: SJ-Q, BH-Z, CY-J, and YP-F; Provision of study material or patients: SJ-Q, BH-Z, and YP-F; Experimental data acquirement, analysis, and interpretation: CY-J, YP-F, CZ, MX-Z, YY, JZ, JL-H, SS-Z, and WG.

Corresponding authors

Correspondence to Yi-Peng Fu, Bo-Heng Zhang or Shuang-Jian Qiu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, CY., Fu, YP., Zhou, C. et al. Hepatic stellate cells promote intrahepatic cholangiocarcinoma progression via NR4A2/osteopontin/Wnt signaling axis. Oncogene 40, 2910–2922 (2021). https://doi.org/10.1038/s41388-021-01705-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01705-9

This article is cited by

Search

Quick links