Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The RanBP2/RanGAP1-SUMO complex gates β-arrestin2 nuclear entry to regulate the Mdm2-p53 signaling axis


Mdm2 antagonizes the tumor suppressor p53. Targeting the Mdm2-p53 interaction represents an attractive approach for the treatment of cancers with functional p53. Investigating mechanisms underlying Mdm2-p53 regulation is therefore important. The scaffold protein β-arrestin2 (β-arr2) regulates tumor suppressor p53 by counteracting Mdm2. β-arr2 nucleocytoplasmic shuttling displaces Mdm2 from the nucleus to the cytoplasm resulting in enhanced p53 signaling. β-arr2 is constitutively exported from the nucleus, via a nuclear export signal, but mechanisms regulating its nuclear entry are not completely elucidated. β-arr2 can be SUMOylated, but no information is available on how SUMO may regulate β-arr2 nucleocytoplasmic shuttling. While we found β-arr2 SUMOylation to be dispensable for nuclear import, we identified a non-covalent interaction between SUMO and β-arr2, via a SUMO interaction motif (SIM), that is required for β-arr2 cytonuclear trafficking. This SIM promotes association of β-arr2 with the multimolecular RanBP2/RanGAP1-SUMO nucleocytoplasmic transport hub that resides on the cytoplasmic filaments of the nuclear pore complex. Depletion of RanBP2/RanGAP1-SUMO levels result in defective β-arr2 nuclear entry. Mutation of the SIM inhibits β-arr2 nuclear import, its ability to delocalize Mdm2 from the nucleus to the cytoplasm and enhanced p53 signaling in lung and breast tumor cell lines. Thus, a β-arr2 SIM nuclear entry checkpoint, coupled with active β-arr2 nuclear export, regulates its cytonuclear trafficking function to control the Mdm2-p53 signaling axis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: β-arr2 is SUMOylated in cells.
Fig. 2: β-arr2 is SUMOylated on lysine 295.
Fig. 3: β-arr2 contains a SIM in its N-domain.
Fig. 4: The SIM but not SUMOylation on lysine 295 is required for β-arr2 nuclear entry.
Fig. 5: SUMO1 fusion to β-arr2∆SIM does not rescue nuclear import but an NLS fusion does.
Fig. 6: The β-arr2 SIM enhances association with the RanBP2/RanGAP1-SUMO complex and RanBP2/RanGAP1-SUMO depletion inhibits β-arr2 nuclear entry.
Fig. 7: A functional SIM domain is required for β-arr2-mediated cytoplasmic delocalization of Mdm2.
Fig. 8: The β-arr2 SIM domain is required for increased p53 signaling.


  1. 1.

    Enslen H, Lima-Fernandes E, Scott MG. Arrestins as regulatory hubs in cancer signalling pathways. Handb Exp Pharmacol. 2014;219:405–25.

    CAS  PubMed  Google Scholar 

  2. 2.

    Laporte SA, Scott MGH. beta-Arrestins: multitask scaffolds orchestrating the where and when in cell signalling. Methods Mol Biol. 2019;1957:9–55.

    CAS  PubMed  Google Scholar 

  3. 3.

    Peterson YK, Luttrell LM. The diverse roles of arrestin scaffolds in G protein-coupled receptor signaling. Pharmacol Rev. 2017;69:256–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Luttrell LM, Roudabush FL, Choy EW, Miller WE, Field ME, Pierce KL, et al. Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci USA. 2001;98:2449–54.

    CAS  PubMed  Google Scholar 

  5. 5.

    Luttrell LM, Wang J, Plouffe B, Smith JS, Yamani L, Kaur S. et al. Manifold roles of beta-arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. Sci Signal. 2018;11:eaat7650.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, Lin FT, et al. Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science. 2000;290:1574–7.

    CAS  PubMed  Google Scholar 

  7. 7.

    Boularan C, Scott MG, Bourougaa K, Bellal M, Esteve E, Thuret A, et al. beta-arrestin 2 oligomerization controls the Mdm2-dependent inhibition of p53. Proc Natl Acad Sci USA. 2007;104:18061–6.

    CAS  PubMed  Google Scholar 

  8. 8.

    Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ. Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science. 2001;294:1307–13.

    CAS  PubMed  Google Scholar 

  9. 9.

    Wang P, Wu Y, Ge X, Ma L, Pei G. Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus. J Biol Chem. 2003;278:11648–53.

    CAS  PubMed  Google Scholar 

  10. 10.

    Javadi A, Deevi RK, Evergren E, Blondel-Tepaz E, Baillie GS, Scott MG. et al. PTEN controls glandular morphogenesis through a juxtamembrane beta-Arrestin1/ARHGAP21 scaffolding complex. Elife. 2017;6:e24578.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Lima-Fernandes E, Enslen H, Camand E, Kotelevets L, Boularan C, Achour L, et al. Distinct functional outputs of PTEN signalling are controlled by dynamic association with beta-arrestins. EMBO J. 2011;30:2557–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Lima-Fernandes E, Misticone S, Boularan C, Paradis JS, Enslen H, Roux PP, et al. A biosensor to monitor dynamic regulation and function of tumour suppressor PTEN in living cells. Nat Commun. 2014;5:4431.

    CAS  PubMed  Google Scholar 

  13. 13.

    Alexander RA, Lot I, Saha K, Abadie G, Lambert M, Decosta E. et al. Beta-arrestins operate an on/off control switch for focal adhesion kinase activity. Cell Mol Life Sci. 2020;77:5259–79.

    CAS  PubMed  Google Scholar 

  14. 14.

    Scott MG, Le Rouzic E, Perianin A, Pierotti V, Enslen H, Benichou S, et al. Differential nucleocytoplasmic shuttling of beta-arrestins. Characterization of a leucine-rich nuclear export signal in beta-arrestin2. J Biol Chem. 2002;277:37693–701.

    CAS  PubMed  Google Scholar 

  15. 15.

    Wyatt D, Malik R, Vesecky AC, Marchese A. Small ubiquitin-like modifier modification of arrestin-3 regulates receptor trafficking. J Biol Chem. 2011;286:3884–93.

    CAS  PubMed  Google Scholar 

  16. 16.

    Xiao N, Li H, Mei W, Cheng J. SUMOylation attenuates human beta-arrestin 2 inhibition of IL-1R/TRAF6 signaling. J Biol Chem. 2015;290:1927–35.

    CAS  PubMed  Google Scholar 

  17. 17.

    Flotho A, Melchior F. Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem. 2013;82:357–85.

    CAS  PubMed  Google Scholar 

  18. 18.

    Geiss-Friedlander R, Melchior F. Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol. 2007;8:947–56.

    CAS  PubMed  Google Scholar 

  19. 19.

    Hay RT. SUMO: a history of modification. Mol Cell. 2005;18:1–12.

    CAS  PubMed  Google Scholar 

  20. 20.

    Rodriguez MS, Dargemont C, Hay RT. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem. 2001;276:12654–9.

    CAS  PubMed  Google Scholar 

  21. 21.

    Guo D, Li M, Zhang Y, Yang P, Eckenrode S, Hopkins D, et al. A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat Genet. 2004;36:837–41.

    CAS  PubMed  Google Scholar 

  22. 22.

    Kerscher O. SUMO junction-what’s your function? New insights through SUMO-interacting motifs. EMBO Rep. 2007;8:550–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Jakobs A, Koehnke J, Himstedt F, Funk M, Korn B, Gaestel M, et al. Ubc9 fusion-directed SUMOylation (UFDS): a method to analyze function of protein SUMOylation. Nat Methods. 2007;4:245–50.

    CAS  PubMed  Google Scholar 

  24. 24.

    Beauclair G, Bridier-Nahmias A, Zagury JF, Saib A, Zamborlini A. JASSA: a comprehensive tool for prediction of SUMOylation sites and SIMs. Bioinformatics. 2015;31:3483–91.

    CAS  PubMed  Google Scholar 

  25. 25.

    Kudo N, Matsumori N, Taoka H, Fujiwara D, Schreiner EP, Wolff B, et al. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci USA. 1999;96:9112–7.

    CAS  PubMed  Google Scholar 

  26. 26.

    Namkung Y, Le Gouill C, Lukashova V, Kobayashi H, Hogue M, Khoury E, et al. Monitoring G protein-coupled receptor and beta-arrestin trafficking in live cells using enhanced bystander BRET. Nat Commun. 2016;7:12178.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Sakin V, Richter SM, Hsiao HH, Urlaub H, Melchior F. Sumoylation of the GTPase Ran by the RanBP2 SUMO E3 Ligase Complex. J Biol Chem. 2015;290:23589–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Walde S, Thakar K, Hutten S, Spillner C, Nath A, Rothbauer U, et al. The nucleoporin Nup358/RanBP2 promotes nuclear import in a cargo- and transport receptor-specific manner. Traffic. 2012;13:218–33.

    PubMed  Google Scholar 

  29. 29.

    Mahajan R, Delphin C, Guan T, Gerace L, Melchior F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell. 1997;88:97–107.

    CAS  PubMed  Google Scholar 

  30. 30.

    Matunis MJ, Wu J, Blobel G. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J Cell Biol. 1998;140:499–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Wu J, Matunis MJ, Kraemer D, Blobel G, Coutavas E. Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J Biol Chem. 1995;270:14209–13.

    CAS  PubMed  Google Scholar 

  32. 32.

    Yokoyama N, Hayashi N, Seki T, Pante N, Ohba T, Nishii K, et al. A giant nucleopore protein that binds Ran/TC4. Nature. 1995;376:184–8.

    CAS  PubMed  Google Scholar 

  33. 33.

    Hashizume C, Kobayashi A, Wong RW. Down-modulation of nucleoporin RanBP2/Nup358 impaired chromosomal alignment and induced mitotic catastrophe. Cell Death Dis. 2013;4:e854.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Monteith JA, Mellert H, Sammons MA, Kuswanto LA, Sykes SM, Resnick-Silverman L, et al. A rare DNA contact mutation in cancer confers p53 gain-of-function and tumor cell survival via TNFAIP8 induction. Mol Oncol. 2016;10:1207–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Gonzalez-Santamaria J, Campagna M, Garcia MA, Marcos-Villar L, Gonzalez D, Gallego P, et al. Regulation of vaccinia virus E3 protein by small ubiquitin-like modifier proteins. J Virol. 2011;85:12890–900.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Li R, Wang L, Liao G, Guzzo CM, Matunis MJ, Zhu H, et al. SUMO binding by the Epstein-Barr virus protein kinase BGLF4 is crucial for BGLF4 function. J Virol. 2012;86:5412–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Brandariz-Nunez A, Roa A, Valle-Casuso JC, Biris N, Ivanov D, Diaz-Griffero F. Contribution of SUMO-interacting motifs and SUMOylation to the antiretroviral properties of TRIM5alpha. Virology. 2013;435:463–71.

    CAS  PubMed  Google Scholar 

  38. 38.

    Wang PY, Hsu PI, Wu DC, Chen TC, Jarman AP, Powell LM. et al. SUMOs mediate the nuclear transfer of p38 and p-p38 during helicobacter pylori infection. Int J Mol Sci. 2018;19:2482

    PubMed Central  Google Scholar 

  39. 39.

    Lin DY, Huang YS, Jeng JC, Kuo HY, Chang CC, Chao TT, et al. Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol Cell. 2006;24:341–54.

    CAS  PubMed  Google Scholar 

  40. 40.

    Werner A, Flotho A, Melchior F. The RanBP2/RanGAP1*SUMO1/Ubc9 complex is a multisubunit SUMO E3 ligase. Mol Cell. 2012;46:287–98.

    CAS  PubMed  Google Scholar 

  41. 41.

    Hutten S, Flotho A, Melchior F, Kehlenbach RH. The Nup358-RanGAP complex is required for efficient importin alpha/beta-dependent nuclear import. Mol Biol Cell. 2008;19:2300–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Hutten S, Walde S, Spillner C, Hauber J, Kehlenbach RH. The nuclear pore component Nup358 promotes transportin-dependent nuclear import. J Cell Sci. 2009;122:1100–10.

    CAS  PubMed  Google Scholar 

  43. 43.

    Zhang X, Min X, Wang S, Sun N, Kim KM. Mdm2-mediated ubiquitination of beta-arrestin2 in the nucleus occurs in a Gbetagamma- and clathrin-dependent manner. Biochem Pharm. 2020;178:114049.

    CAS  PubMed  Google Scholar 

  44. 44.

    Singh R, Brewer MK, Mashburn CB, Lou D, Bondada V, Graham B, et al. Calpain 5 is highly expressed in the central nervous system (CNS), carries dual nuclear localization signals, and is associated with nuclear promyelocytic leukemia protein bodies. J Biol Chem. 2014;289:19383–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Bolger GB, Baillie GS, Li X, Lynch MJ, Herzyk P, Mohamed A, et al. Scanning peptide array analyses identify overlapping binding sites for the signalling scaffold proteins, beta-arrestin and RACK1, in cAMP-specific phosphodiesterase PDE4D5. Biochem J. 2006;398:23–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Li X, Vadrevu S, Dunlop A, Day J, Advant N, Troeger J, et al. Selective SUMO modification of cAMP-specific phosphodiesterase-4D5 (PDE4D5) regulates the functional consequences of phosphorylation by PKA and ERK. Biochem J. 2010;428:55–65.

    CAS  PubMed  Google Scholar 

  47. 47.

    Blondel-Tepaz E, Guilbert T, Scott MGH. Methods to investigate the nucleocytoplasmic shuttling properties of beta-arrestins. Methods Mol Biol. 2019;1957:251–69.

    CAS  PubMed  Google Scholar 

  48. 48.

    Paradis JS, Ly S, Blondel-Tepaz E, Galan JA, Beautrait A, Scott MG, et al. Receptor sequestration in response to beta-arrestin-2 phosphorylation by ERK1/2 governs steady-state levels of GPCR cell-surface expression. Proc Natl Acad Sci USA. 2015;112:E5160–8.

    CAS  PubMed  Google Scholar 

Download references


We thank Dr. A. Benmerah for helpful discussion, Dr. J. Liotard for excellent technical assistance, and the Institut Cochin Imaging (IMAG’IC) and Sequencing platforms (GENOM’IC). The Institut Cochin lab is part of the Who am I? laboratory of excellence (grant ANR-11-LABX-0071), funded by the “Investments for the Future” program operated by The French National Research Agency (grant ANR-11-IDEX-0005-01). This work was funded by grants from the Fondation ARC pour la Recherche sur le Cancer (“Projet ARC” to MGHS), Ligue contre le Cancer (to MGHS), Royal Society (“International Joint Project Scheme” to MGHS and GSB), France Canada Research Fund (to MGHS and SA), CNRS, and INSERM. The work in the laboratory of M.B. was supported by a CIHR Foundation (FDN148431) grant. M.B. holds the Canada Research Chair in Signal transduction and Molecular Pharmacology. EBT was funded by MESR and Fondation ARC pour la Recherche sur le Cancer doctoral fellowships.

Author information




EBT, ML, BS, JSP, GSB, HE, MB, SA, SM, and MGHS designed research. EBT, ML, JSP, BS, MK, KS, JF, AP, and MGHS performed research. EBT, ML, BS, JSP, CA, ELF, AZ, LG, GSB, HE, MB, SA, SM, and MGHS analyzed data. MGHS supervised the project. EBT and MGHS wrote the paper, which was subsequently reviewed by all other authors.

Corresponding author

Correspondence to Mark G. H. Scott.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blondel-Tepaz, E., Leverve, M., Sokrat, B. et al. The RanBP2/RanGAP1-SUMO complex gates β-arrestin2 nuclear entry to regulate the Mdm2-p53 signaling axis. Oncogene 40, 2243–2257 (2021).

Download citation


Quick links