Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ZnT7 RNAi favors RafGOFscrib−/−-induced tumor growth and invasion in Drosophila through JNK signaling pathway

Abstract

The disruption of zinc homeostasis has been identified in patients suffering from various cancers, but a causative relationship has not yet been established. Drosophila melanogaster has become a powerful model to study cancer biology. Here using a Drosophila model of malignant tumor RafGOFscrib−/−, we observed that the tumor growth, invasion and migration were enhanced by silencing dZnT7, a zinc transporter localized on the Golgi apparatus. Further study indicated that the zinc deficiency in Golgi of dZnT7 RNAi resulted in ER stress which could activate the c-Jun-N-terminal Kinase (JNK) signaling and this process is mediated by Atg9. Lastly, we demonstrated that the exacerbation of dZnT7 RNAi on tumor was promoted by JNK signaling-dependent cell autonomous and non-autonomous autophagy. These findings suggest that zinc homeostasis in secretory compartments may provide a new therapeutic target for tumor treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Zinc transporter ZnT7 controls tumor growth.
Fig. 2: dZnT7 RNAi promotes tumor growth and invasion.
Fig. 3: Zinc dyshomeostasis in Golgi apparatus activates JNK signaling.
Fig. 4: dZnT7 knockdown enhanced tumor growth and invasion depends on JNK signaling.
Fig. 5: The activation of JNK pathway in dZnT7 RNAi induces autophagy which promotes tumor growth, invasion and migration.
Fig. 6: Atg9 could regulate JNK-dependent autophagy activation in dZnT7 RNAi flies.
Fig. 7: A model to explain the effects of zinc transporter ZnT7 on tumor growth and invasion.

Similar content being viewed by others

References

  1. Kambe T, Tsuji T, Hashimoto A, Itsumura N. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev. 2015;95:749–84.

    Article  CAS  PubMed  Google Scholar 

  2. McCall KA, Huang C, Fierke CA. Function and mechanism of zinc metalloenzymes. J Nutr. 2000;130:1437S–1446S.

    Article  CAS  PubMed  Google Scholar 

  3. Yan M, Song Y, Wong CP, Hardin K, Ho E. Zinc deficiency alters DNA damage response genes in normal human prostate epithelial cells. J Nutr. 2008;138:667–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. MacDonald RS. The role of zinc in growth and cell proliferation. J Nutr. 2000;130:1500S–1508S.

    Article  CAS  PubMed  Google Scholar 

  5. Hershfinkel M, Silverman WF, Sekler I. The zinc sensing receptor, a link between zinc and cell signaling. Mol Med. 2007;13:331–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bin BH, Seo J, Kim ST. Function, structure, and transport aspects of ZIP and ZnT zinc transporters in immune cells. J Immunol Res. 2018;2018:1–9.

    Article  Google Scholar 

  7. Cousins RJ, Liuzzi JP, Lichten LA. Mammalian zinc transport, trafficking, and signals. J Biol Chem. 2006;281:24085–9.

    Article  CAS  PubMed  Google Scholar 

  8. Xiao GR, Zhou B. What can flies tell us about zinc homeostasis? Arch Biochem Biophys. 2016;611:134–41.

    Article  CAS  PubMed  Google Scholar 

  9. Richards CD, Burke R. A fly’s eye view of zinc homeostasis: novel insights into the genetic control of zinc metabolism from Drosophila. Arch Biochem Biophys. 2016;611:142–9.

    Article  CAS  PubMed  Google Scholar 

  10. Prasad AS. Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr. 2013;4:176–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hrabeta J, Eckschlager T, Stiborova M, Heger Z, Krizkova S, Adam V. Zinc and zinc-containing biomolecules in childhood brain tumors. J Mol Med. 2016;94:1199–215.

    Article  CAS  PubMed  Google Scholar 

  12. Bafaro E, Liu Y, Xu Y, Dempski RE. The emerging role of zinc transporters in cellular homeostasis and cancer. Signal Transduct Target Ther. 2017;2:17029.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Franklin RB, Costello LC. Zinc as an anti-tumor agent in prostate cancer and in other cancers. Arch Biochem Biophys. 2007;463:211–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kirschke CP, Huang L. ZnT7, a novel mammalian zinc transporter, accumulates zinc in the Golgi apparatus. J Biol Chem. 2003;278:4096–102.

    Article  CAS  PubMed  Google Scholar 

  15. Liang D, Xiang LB, Yang MW, Zhang XL, Guo BL, Chen Y, et al. ZnT7 can protect MC3T3-E1 cells from oxidative stress-induced apoptosis via PI3K/Akt and MAPK/ERK signaling pathways. Cell Signal. 2013;25:1126–35.

    Article  CAS  PubMed  Google Scholar 

  16. Tepaamorndech S, Huang LP, Kirschke CP. A null-mutation in the Znt7 gene accelerates prostate tumor formation in a transgenic adenocarcinoma mouse prostate model. Cancer Lett. 2011;308:33–42.

    Article  CAS  PubMed  Google Scholar 

  17. Bubici C, Papa S. JNK signalling in cancer: in need of new, smarter therapeutic targets. Brit J Pharm. 2014;171:24–37.

    Article  CAS  Google Scholar 

  18. Antoniou X, Falconi M, Di Marino D, Borsello T. JNK3 as a therapeutic target for neurodegenerative diseases. J Alzheimers Dis. 2011;24:633–42.

    Article  CAS  PubMed  Google Scholar 

  19. Zeke A, Misheva M, Remenyi A, Bogoyevitch MA. JNK signaling: regulation and functions based on complex protein-protein partnerships. Microbiol Mol Biol Rev. 2016;80:793–835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochimica et biophysica acta. 2013;1833:3460–70.

    Article  CAS  PubMed  Google Scholar 

  21. Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Cell Biol. 2007;19:142–9.

    Article  CAS  PubMed  Google Scholar 

  22. Dhanasekaran DN, Reddy EP. JNK-signaling: a multiplexing hub in programmed cell death. Genes cancer. 2017;8:682–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eom SJ, Kim EY, Lee JE, Kang HJ, Shim J, Kim SU, et al. Zn(2+) induces stimulation of the c-Jun N-terminal kinase signaling pathway through phosphoinositide 3-Kinase. Mol Pharm. 2001;59:981–6.

    Article  CAS  Google Scholar 

  24. Calap-Quintana P, Gonzalez-Fernandez J, Sebastia-Ortega N, Llorens JV, Molto MD. Drosophila melanogaster models of metal-related human diseases and metal toxicity. Int J Mol Sci. 2017;18:1456.

    Article  PubMed Central  Google Scholar 

  25. Pastor-Pareja JC, Xu T. Dissecting social cell biology and tumors using drosophila genetics. Annu Rev Genet. 2013;47:51–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma XJ, Lu JY, Dong YL, Li DM, Malagon JN, Xu T. PP6 disruption synergizes with oncogenic ras to promote JNK-dependent tumor growth and invasion. Cell Rep. 2017;19:2657–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EWT, Chang F, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Bba-Mol Cell Res. 2007;1773:1263–84.

    CAS  Google Scholar 

  28. Uhlirova M, Jasper H, Bohmann D. Non-cell-autonomous induction of tissue overgrowth by JNK/Ras cooperation in a Drosophila tumor model. Proc Natl Acad Sci USA. 2005;102:13123–8.

    Article  CAS  PubMed  Google Scholar 

  29. Doggett K, Grusche FA, Richardson HE, Brumby AM. Loss of the Drosophila cell polarity regulator Scribbled promotes epithelial tissue overgrowth and cooperation with oncogenic Ras-Raf through impaired Hippo pathway signaling. Bmc Dev Biol. 2011;11:57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Richardson HE, Portela M. Modelling cooperative tumorigenesis in Drosophila. Biomed Res Int. 2018;2018:1–29.

    Article  Google Scholar 

  31. Liu JF, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, et al. An integrated TCGA pan-cancer clinical data resource to drive high quality survival outcome analytics. Cancer Res. 2018;78:400–16.

    Google Scholar 

  32. Villegas SN. One hundred years of Drosophila cancer research: no longer in solitude. Dis Model Mech. 2019;12:dmm039032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qin QH, Wang XX, Zhou B. Functional studies of Drosophila zinc transporters reveal the mechanism for dietary zinc absorption and regulation. Bmc Biol. 2013;11:101.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Igaki T, Pagliarini RA, Xu T. Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila. Curr Biol. 2006;16:1139–46.

    Article  CAS  PubMed  Google Scholar 

  35. Beira JV, Paro R. The legacy of Drosophila imaginal discs. Chromosoma. 2016;125:573–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dechen KS, Richards CD, Lye JC, Hwang JEC, Burke R. Compartmentalized zinc deficiency and toxicities caused by ZnT and Zip gene over expression result in specific phenotypes in Drosophila. Int J Biochem Cell B. 2015;60:23–33.

    Article  CAS  Google Scholar 

  37. Pagliarini RA, Xu T. A genetic screen in Drosophila for metastatic behavior. Science. 2003;302:1227–31.

    Article  CAS  PubMed  Google Scholar 

  38. Mishra-Gorur K, Li DM, Ma XJ, Yarman YK, Xue L, Xu T. Spz/Toll-6 signal guides organotropic metastasis in Drosophila. Dis Model Mech. 2019;12:dmm039727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Newsome TP, Asling B, Dickson BJ. Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development. 2000;127:851–60.

    Article  CAS  PubMed  Google Scholar 

  40. Sheng ZT, Du W. NatB regulates Rb mutant cell death and tumor growth by modulating EGFR/MAPK signaling through the N-end rule pathways. Plos Genet. 2020;16:e1008863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun YH, Zhang D, Guo XW, Li WZ, Li CL, Luo JJ, et al. MKK3 modulates JNK-dependent cell migration and invasion. Cell Death Dis. 2019;10:149.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu SN, Sun J, Wang D, Pflugfelder GO, Shen J. Fold formation at the compartment boundary of Drosophila wing requires Yki signaling to suppress JNK dependent apoptosis. Sci Rep. 2016;6:38003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Troost T, Klein T. Sequential notch signalling at the boundary of fringe expressing and non-expressing cells. Plos One. 2012;7:e49007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zang YR, Wan M, Liu M, Ke HM, Ma SC, Liu LP, et al. Plasma membrane overgrowth causes fibrotic collagen accumulation and immune activation in Drosophila adipocytes. Elife. 2015;4:e07187.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang L, Chi ZH, Ren H, Rong M, Dahlstrom A, Huang L, et al. Imunoreactivity of zinc transporter 7 (ZNT7) in mouse dorsal root ganglia. Brain Res Bull. 2007;74:278–83.

    Article  CAS  PubMed  Google Scholar 

  46. Wang XX, Wu YT, Zhou B. Dietary zinc absorption is mediated by ZnT1 in Drosophila melanogaster. Faseb J. 2009;23:2650–61.

    Article  CAS  PubMed  Google Scholar 

  47. Missirlis F, Kosmidis S, Brody T, Mavrakis M, Holmberg S, Odenwald WF, et al. Homeostatic mechanisms for iron storage revealed by genetic manipulations and live imaging of Drosophila ferritin. Genetics. 2007;177:89–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xiao GR, Wan ZH, Fan QW, Tang XN, Zhou B. The metal transporter ZIP13 supplies iron into the secretory pathway in Drosophila melanogaster. Elife. 2014;3:03191.

    Article  Google Scholar 

  49. Xiao GR, Zhou B. ZIP13: a study of Drosophila offers an alternative explanation for the corresponding human disease. Front Genet. 2018;8:234.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sonoshita M, Cagan RL. Modeling human cancers in Drosophila. Curr Top Dev Biol. 2017;121:287–309.

    Article  CAS  PubMed  Google Scholar 

  51. Weber U, Paricio N, Mlodzik M. Jun mediates frizzled-induced R3/R4 cell fate distinction and planar polarity determination in the Drosophila eye. Development. 2000;127:3619–29.

    Article  CAS  PubMed  Google Scholar 

  52. Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40:280–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Katheder NS, Khezri R, O’Farrell F, Schultz SW, Jain A, Rahman MM, et al. Microenvironmental autophagy promotes tumour growth. Nature. 2017;541:417–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Poillet-Perez L, White E. Role of tumor and host autophagy in cancer metabolism. Genes Dev. 2019;33:610–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bali A, Shravage BV. Characterization of the autophagy related gene-8a (Atg8a) promoter in Drosophila melanogaster. Int J Dev Biol. 2017;61:551–5.

    Article  CAS  PubMed  Google Scholar 

  56. Manic G, Obrist F, Kroemer G, Vitale I, Galluzzi L. Chloroquine and hydroxychloroquine for cancer therapy. Mol cell oncol. 2014;1:e29911.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wu H, Wang MC, Bohmann D. JNK protects Drosophila from oxidative stress by trancriptionally activating autophagy. Mech Dev. 2009;126:624–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tang HW, Liao HM, Peng WH, Lin HR, Chen CH, Chen GC. Atg9 interacts with dTRAF2/TRAF6 to regulate oxidative stress-induced JNK activation and autophagy induction. Dev Cell. 2013;27:489–503.

    Article  CAS  PubMed  Google Scholar 

  59. Takatani-Nakase T. Zinc transporters and the progression of breast cancers. Biol Pharm Bull. 2018;41:1517–22.

    Article  CAS  PubMed  Google Scholar 

  60. Li D, Stovall DB, Wang W, Sui G. Advances of zinc signaling studies in prostate cancer. Int J Mol Sci. 2020;21:667.

    Article  CAS  PubMed Central  Google Scholar 

  61. Kolenko V, Teper E, Kutikov A, Uzzo R. Zinc and zinc transporters in prostate carcinogenesis. Nat Rev Urol. 2013;10:219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pan Z, Choi S, Ouadid-Ahidouch H, Yang JM, Beattie JH, Korichneva I. Zinc transporters and dysregulated channels in cancers. Front Biosci. 2017;22:623–43.

    Article  CAS  Google Scholar 

  63. Biteau B, Karpac J, Hwangbo D, Jasper H. Regulation of Drosophila lifespan by JNK signaling. Exp Gerontol. 2011;46:349–54.

    Article  CAS  PubMed  Google Scholar 

  64. Lee H, Park MT, Choi BH, Oh ET, Song MJ, Lee J, et al. Endoplasmic reticulum stress-induced JNK activation is a critical event leading to mitochondria-mediated cell death caused by beta-lapachone treatment. Plos One. 2011;6:e21533.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Groth C, Sasamura T, Khanna MR, Whitley M, Fortini ME. Protein trafficking abnormalities in Drosophila tissues with impaired activity of the ZIP7 zinc transporter Catsup. Development. 2013;140:3018–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang XL, Lian X, Liang D, Zhang LZ, Liu SQ, Yang LN, et al. Protective effect of Znt7 on high glucose-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells. Kidney Blood Press R. 2018;43:500–12.

    Article  CAS  Google Scholar 

  67. Sousa CM, Biancur DE, Wang XX, Halbrook CJ, Sherman MH, Zhang L, et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature. 2016;536:479–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Xu R, Ji ZY, Xu C, Zhu J. The clinical value of using chloroquine or hydroxychloroquine as autophagy inhibitors in the treatment of cancers. A systematic review and meta-analysis. Medicine. 2018;97:e12912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yu HJ, Zhou YF, Lind SE, Ding WQ. Clioquinol targets zinc to lysosomes in human cancer cells. Biochem J. 2009;417:133–9.

    Article  CAS  PubMed  Google Scholar 

  70. Xue J, Moyer A, Peng B, Wu JC, Hannafon BN, Ding WQ. Chloroquine Is a Zinc Ionophore. Plos One. 2014;9:e109180.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Willsey HR, Zheng X, Carlos Pastor-Pareja J, Willsey AJ, Beachy PA, Xu T. Localized JNK signaling regulates organ size during development. Elife. 2016;5:e11491.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kushnir T, Mezuman S, Bar-Cohen S, Lange R, Paroush Z, Helman A. Novel interplay between JNK and Egfr signaling in Drosophila dorsal closure. Plos Genet. 2017;13:e1006860.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ma X, Huang J, Yang L, Yang Y, Li W, Xue L. NOPO modulates Egr-induced JNK-independent cell death in Drosophila. Cell Res. 2012;22:425–31.

    Article  CAS  PubMed  Google Scholar 

  74. Lang M, Wang L, Fan Q, Xiao G, Wang X, Zhong Y, et al. Genetic inhibition of solute-linked carrier 39 family transporter 1 ameliorates abeta pathology in a Drosophila model of Alzheimer’s disease. PLoS Genet. 2012;8:e1002683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu M, Pastor-Pareja JC, Xu T. Interaction between Ras(V12) and scribbled clones induces tumour growth and invasion. Nature. 2010;463:545–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zang Y, Wan M, Liu M, Ke H, Ma S, Liu LP, et al. Plasma membrane overgrowth causes fibrotic collagen accumulation and immune activation in Drosophila adipocytes. Elife. 2015;4:e07187.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Schroeder MC, Chen CL, Gajewski K, Halder G. A non-cell-autonomous tumor suppressor role for Stat in eliminating oncogenic scribble cells. Oncogene. 2013;32:4471–9.

    Article  CAS  PubMed  Google Scholar 

  78. Xiao GR, Liu ZH, Zhao MR, Wang HL, Zhou B. Transferrin 1 functions in iron trafficking and genetically interacts with ferritin in Drosophila melanogaster. Cell Rep. 2019;26:748–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was funded by the National Natural Science Foundation of China (31671284), the Fundamental Research Funds for the Central Universities (JZ2020HGPA0115), Youth Science and Technology Talents Support Program (2020) by Anhui Association for Science and Technology (RCTJ202001), and the National Postdoctoral Program for Innovative Talents (BX201600045). The authors appreciate the gifts of fly stocks from Dr. Bing Zhou and Dr. Jose C. PASTOR-PAREJA. The authors are also grateful to the Bloomington Drosophila Stock Center, the Vienna Drosophila RNAi Center and Tsinghua Fly Center for fly stocks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiran Xiao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, T., Ji, X., Gao, Y. et al. ZnT7 RNAi favors RafGOFscrib−/−-induced tumor growth and invasion in Drosophila through JNK signaling pathway. Oncogene 40, 2217–2229 (2021). https://doi.org/10.1038/s41388-021-01703-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01703-x

This article is cited by

Search

Quick links