Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Statins repress hedgehog signaling in medulloblastoma with no bone toxicities

Abstract

The Hedgehog (Hh) pathway plays an indispensable role in bone development and genetic activation of the pathway results in medulloblastoma (MB), the most common malignant brain tumor in children. Inhibitors of Hh pathway (such as vismodegib and sonedigib), which are used to treat MB, cause irreversible defects in bone growth in young children. Cholesterol is required for the activation of the Hh pathway, and statins, inhibitors of cholesterol biosynthesis, suppress MB growth by repressing Hh signaling in tumor cells. Here, we investigate the role of cholesterol biosynthesis in the proliferation and Hh signaling in chondrocytes, and examine the bone development in mice after statin treatment. Statins significantly inhibited MB growth in young mice, but caused no defects in bone development. Conditional deletion of NADP steroid dehydrogenase-like (NSDHL), an enzyme necessary for cholesterol biosynthesis, suppressed cholesterol synthesis in chondrocytes, and disrupted the growth plate in mouse femur and tibia, indicating the important function of intracellular cholesterol in bone development. Hh pathway activation and the proliferation of chondrocytes were inhibited by statin treatment in vitro; however, statins did not impair bone growth in vivo due to insufficient penetration into the bone. Our studies reveal a critical role of cholesterol in bone development, and support the utilization of statins for treatment of MB as well as other Hh pathway-associated malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simvastatin inhibited the proliferation and Hh signaling in MB cells.
Fig. 2: Statins synergized with vismodegib in inhibiting MB cell proliferation.
Fig. 3: No bone defects were detected in mice after simvastatin treatment.
Fig. 4: Statins inhibited chondrocyte proliferation in vitro.
Fig. 5: Deficiency in cholesterol biosynthesis inhibited chondrocyte proliferation.
Fig. 6: Penetration of simvastatin in brain and bone.

Similar content being viewed by others

References

  1. Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15:3059–87.

    Article  CAS  PubMed  Google Scholar 

  2. Yang ZJ, Ellis T, Markant SL, Read TA, Kessler JD, Bourboulas M, et al. Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell. 2008;14:135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ohba S. et al. Hedgehog signaling in endochondral ossification. J Dev Biol. 2016;4:20.

    Article  PubMed Central  Google Scholar 

  4. Yang J, Andre P, Ye L, Yang YZ. The Hedgehog signalling pathway in bone formation. Int J Oral Sci. 2015;7:73–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kan C, Chen L, Hu Y, Ding N, Li Y, McGuire TL, et al. Gli1-labeled adult mesenchymal stem/progenitor cells and hedgehog signaling contribute to endochondral heterotopic ossification. Bone. 2018;109:71–79.

    Article  CAS  PubMed  Google Scholar 

  6. Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423:332–6.

    Article  CAS  PubMed  Google Scholar 

  7. Long F, Zhang XM, Karp S, Yang Y, McMahon AP. Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development. 2001;128:5099–108.

    Article  CAS  PubMed  Google Scholar 

  8. St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1999;13:2072–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ng JM, Curran T. The Hedgehog’s tale: developing strategies for targeting cancer. Nat Rev Cancer. 2011;11:493–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol. 2011;29:1408–14.

    Article  PubMed  Google Scholar 

  11. Thompson MC, Fuller C, Hogg TL, Dalton J, Finkelstein D, Lau CC, et al. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol. 2006;24:1924–31.

    Article  CAS  PubMed  Google Scholar 

  12. Gajjar A, Stewart CF, Ellison DW, Kaste S, Kun LE, Packer RJ, et al. Phase I study of vismodegib in children with recurrent or refractory medulloblastoma: a pediatric brain tumor consortium study. Clin Cancer Res. 2013;19:6305–12.

    Article  CAS  PubMed  Google Scholar 

  13. Rudin CM, Hann CL, Laterra J, Yauch RL, Callahan CA, Fu L, et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med. 2009;361:1173–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Atwood SX, Sarin KY, Whitson RJ, Li JR, Kim G, Rezaee M, et al. Smoothened variants explain the majority of drug resistance in basal cell carcinoma. Cancer Cell. 2015;27:342–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sharpe HJ, Pau G, Dijkgraaf GJ, Basset-Seguin N, Modrusan Z, Januario T, et al. Genomic analysis of smoothened inhibitor resistance in basal cell carcinoma. Cancer Cell. 2015;27:327–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Curran T. Reproducibility of academic preclinical translational research: lessons from the development of Hedgehog pathway inhibitors to treat cancer. Open Biol. 2018;8:180098.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lee Y, Kawagoe R, Sasai K, Li Y, Russell HR, Curran T, et al. Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene. 2007;26:6442–7.

    Article  CAS  PubMed  Google Scholar 

  18. Kimura H, Ng JM, Curran T. Transient inhibition of the Hedgehog pathway in young mice causes permanent defects in bone structure. Cancer Cell. 2008;13:249–60.

    Article  CAS  PubMed  Google Scholar 

  19. Kieran MW, Chisholm J, Casanova M, Brandes AA, Aerts I, Bouffet E, et al. Phase I study of oral sonidegib (LDE225) in pediatric brain and solid tumors and a phase II study in children and adults with relapsed medulloblastoma. Neuro Oncol. 2017;19:1542–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Robinson GW, Kaste SC, Chemaitilly W, Bowers DC, Laughton S, Smith A, et al. Irreversible growth plate fusions in children with medulloblastoma treated with a targeted hedgehog pathway inhibitor. Oncotarget. 2017;8:69295–302.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature. 1990;343:425–30.

    Article  CAS  PubMed  Google Scholar 

  22. Konig A, Happle R, Bornholdt D, Engel H, Grzeschik KH. Mutations in the NSDHL gene, encoding a 3beta-hydroxysteroid dehydrogenase, cause CHILD syndrome. Am J Med Genet. 2000;90:339–46.

    Article  CAS  PubMed  Google Scholar 

  23. Liu XY, Dangel AW, Kelley RI, Zhao W, Denny P, Botcherby M, et al. The gene mutated in bare patches and striated mice encodes a novel 3beta-hydroxysteroid dehydrogenase. Nat Genet. 1999;22:182–7.

    Article  CAS  PubMed  Google Scholar 

  24. Lee JJ, Ekker SC, von Kessler DP, Porter JA, Sun BI, Beachy PA. Autoproteolysis in hedgehog protein biogenesis. Science. 1994;266:1528–37.

    Article  CAS  PubMed  Google Scholar 

  25. Lewis PM, Dunn MP, McMahon JA, Logan M, Martin JF, St-Jacques B, et al. Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell. 2001;105:599–612.

    Article  CAS  PubMed  Google Scholar 

  26. Huang P, Nedelcu D, Watanabe M, Jao C, Kim Y, Liu J, et al. Cellular cholesterol directly activates smoothened in Hedgehog signaling. Cell. 2016;166:1176–87. e1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luchetti G, Sircar R, Kong JH, Nachtergaele S, Sagner A, Byrne EF. Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling. Elife. 2016;5:e20304.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Byrne EFX, Sircar R, Miller PS, Hedger G, Luchetti G, Nachtergaele S, et al. Structural basis of Smoothened regulation by its extracellular domains. Nature. 2016;535:517–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gordon RE, Zhang L, Peri S, Kuo YM, Du F, Egleston BL, et al. Statins synergize with hedgehog pathway inhibitors for treatment of medulloblastoma. Clin Cancer Res. 2018;24:1375–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hedger G, Koldso H, Chavent M, Siebold C, Rohatgi R, Sansom MSP. Cholesterol interaction sites on the transmembrane domain of the Hedgehog signal transducer and class F G protein-coupled receptor Smoothened. Structure. 2019;27:549–59. e542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Myers BR, Neahring L, Zhang Y, Roberts KJ, Beachy PA. Rapid, direct activity assays for Smoothened reveal Hedgehog pathway regulation by membrane cholesterol and extracellular sodium. Proc Natl Acad Sci USA. 2017;114:E11141–50.

    Article  CAS  PubMed  Google Scholar 

  32. He L, Kulesskiy E, Saarela J, Turunen L, Wennerberg K, Aittokallio T, et al. Methods for high-throughput drug combination screening and synergy scoring. Methods Mol Biol. 2018;1711:351–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ianevski A, Giri AK, Aittokallio T. SynergyFinder 2.0: visual analytics of multi-drug combination synergies. Nucleic Acids Res. 2020;48:W488–W493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ianevski A, He L, Aittokallio T, Tang J. SynergyFinder: a web application for analyzing drug combination dose-response matrix data. Bioinformatics. 2020;36:2645.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yadav B, Wennerberg K, Aittokallio T, Tang J. Searching for drug synergy in complex dose-response landscapes using an interaction potency model. Comput Struct Biotechnol J. 2015;13:504–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng. 2006;93:1152–63.

    Article  CAS  PubMed  Google Scholar 

  37. Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol. 2009;158:693–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kellick KA, Bottorff M, Toth PP. The National Lipid Association’s Safety Task Force. A clinician’s guide to statin drug-drug interactions. J Clin Lipidol. 2014;8:S30–46.

    Article  PubMed  Google Scholar 

  39. Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol. 2012;165:1260–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kopp JL, Dubois CL, Schaffer AE, Hao E, Shih HP, Seymour PA, et al. Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development. 2011;138:653–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13:133–40.

    Article  CAS  PubMed  Google Scholar 

  42. Cunningham D, DeBarber AE, Bir N, Binkley L, Merkens LS, Steiner RD, et al. Analysis of hedgehog signaling in cerebellar granule cell precursors in a conditional Nsdhl allele demonstrates an essential role for cholesterol in postnatal CNS development. Hum Mol Genet. 2015;24:2808–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tsushima H, Tang YJ, Puviindran V, Hsu SC, Nadesan P, Yu C, et al. Intracellular biosynthesis of lipids and cholesterol by Scap and Insig in mesenchymal cells regulates long bone growth and chondrocyte homeostasis. Development. 2018;145:dev162396.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Duggan DE, Vickers S. Physiological disposition of HMG-CoA-reductase inhibitors. Drug Metab Rev. 1990;22:333–62.

    Article  CAS  PubMed  Google Scholar 

  45. Kantola T, Kivisto KT, Neuvonen PJ. Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid. Clin Pharm Ther. 1998;63:397–402.

    Article  CAS  Google Scholar 

  46. Lilja JJ, Kivisto KT, Neuvonen PJ. Grapefruit juice-simvastatin interaction: effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors. Clin Pharm Ther. 1998;64:477–83.

    Article  CAS  Google Scholar 

  47. Schachter M. Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam Clin Pharmacol. 2005;19:117–25.

    Article  CAS  PubMed  Google Scholar 

  48. Rocha VZ, Santos RD. Safety of statin treatment in children with familial hypercholesterolemia: filling the gaps. J Clin Lipidol. 2018;12:12–15.

    Article  PubMed  Google Scholar 

  49. Kusters DM, Avis HJ, de Groot E, Wijburg FA, Kastelein JJ, Wiegman A, et al. Ten-year follow-up after initiation of statin therapy in children with familial hypercholesterolemia. JAMA. 2014;312:1055–7.

    Article  PubMed  Google Scholar 

  50. Haraguchi R, Kitazawa R, Kohara Y, Ikedo A, Imai Y, Kitazawa S. Recent insights into long bone development: central role of Hedgehog signaling pathway in regulating growth plate. Int J Mol Sci. 2019;20.

  51. Suzuki A, Ogata K, Yoshioka H, Shim J, Wassif CA, Porter FD, et al. Disruption of Dhcr7 and Insig1/2 in cholesterol metabolism causes defects in bone formation and homeostasis through primary cilium formation. Bone Res. 2020;8:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Maeda Y, Nakamura E, Nguyen MT, Suva LJ, Swain FL, Razzaque MS, et al. Indian Hedgehog produced by postnatal chondrocytes is essential for maintaining a growth plate and trabecular bone. Proc Natl Acad Sci USA. 2007;104:6382–7.

    Article  CAS  PubMed  Google Scholar 

  53. Xu R, Khan SK, Zhou T, Gao B, Zhou Y, Zhou X, et al. Galphas signaling controls intramembranous ossification during cranial bone development by regulating both Hedgehog and Wnt/beta-catenin signaling. Bone Res. 2018;6:33.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gofflot F, Hars C, Illien F, Chevy F, Wolf C, Picard JJ, et al. Molecular mechanisms underlying limb anomalies associated with cholesterol deficiency during gestation: implications of Hedgehog signaling. Hum Mol Genet. 2003;12:1187–98.

    Article  CAS  PubMed  Google Scholar 

  55. Wu S, De Luca F. Role of cholesterol in the regulation of growth plate chondrogenesis and longitudinal bone growth. J Biol Chem. 2004;279:4642–7.

    Article  CAS  PubMed  Google Scholar 

  56. Laughlin RC, Carey TF. Cataracts in patients treated with triparanol. JAMA. 1962;181:339–40.

    Article  CAS  PubMed  Google Scholar 

  57. Roux C, Dupuis R, Horvath C, Talbot JN. Teratogenic effect of an inhibitor of cholesterol synthesis (AY 9944) in rats: correlation with maternal cholesterolemia. J Nutr. 1980;110:2310–2.

    Article  CAS  PubMed  Google Scholar 

  58. Chan KA, Andrade SE, Boles M, Buist DS, Chase GA, Donahue JG, et al. Inhibitors of hydroxymethylglutaryl-coenzyme A reductase and risk of fracture among older women. Lancet. 2000;355:2185–8.

    Article  CAS  PubMed  Google Scholar 

  59. Maeda T, Kawane T, Horiuchi N. Statins augment vascular endothelial growth factor expression in osteoblastic cells via inhibition of protein prenylation. Endocrinology. 2003;144:681–92.

    Article  CAS  PubMed  Google Scholar 

  60. Wang PS, Solomon DH, Mogun H, Avorn J. HMG-CoA reductase inhibitors and the risk of hip fractures in elderly patients. JAMA. 2000;283:3211–6.

    Article  CAS  PubMed  Google Scholar 

  61. Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, et al. Stimulation of bone formation in vitro and in rodents by statins. Science. 1999;286:1946–9.

    Article  CAS  PubMed  Google Scholar 

  62. Cavalli FMG, Remke M, Rampasek L, Peacock J, Shih DJH, Luu B, et al. Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell. 2017;31:737–54. e736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schwalbe EC, Lindsey JC, Nakjang S, Crosier S, Smith AJ, Hicks D, et al. Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. Lancet Oncol. 2017;18:958–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hovestadt V, Ayrault O, Swartling FJ, Robinson GW, Pfister SM, Northcott PA. Medulloblastomics revisited: biological and clinical insights from thousands of patients. Nat Rev Cancer. 2020;20:42–56.

    Article  CAS  PubMed  Google Scholar 

  65. Gosset M, Berenbaum F, Thirion S, Jacques C. Primary culture and phenotyping of murine chondrocytes. Nat Protoc. 2008;3:1253–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Drs. Andrey Efimov, Kathy Cai, Dusica Cvetkovic, and James Oesterling for technical assistance; and Drs. Maike Sander, Joan Font-Burgada, and Sergei Grivenniko for providing transgenic mice. This research was supported by American Cancer Society (RSG1605301NEC to Z.-j.Y.), American Brain Tumor Association (DG1900025 to Z.-j.Y.), PA CURE Health Research Fund (CURE 4100068716 to Z.-j.Y.), National Natural Science Foundation of China (81803616 to C.Z.), and the Natural Science Foundation of Jiangsu Higher Education Institutions (18KJB350010 to C.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeng-jie Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Q., Gong, T., Zheng, C. et al. Statins repress hedgehog signaling in medulloblastoma with no bone toxicities. Oncogene 40, 2258–2272 (2021). https://doi.org/10.1038/s41388-021-01701-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01701-z

This article is cited by

Search

Quick links