Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proteasome regulation by reversible tyrosine phosphorylation at the membrane

Abstract

Reversible phosphorylation has emerged as an important mechanism for regulating 26S proteasome function in health and disease. Over 100 phospho-tyrosine sites of the human proteasome have been detected, and yet their function and regulation remain poorly understood. Here we show that the 19S subunit Rpt2 is phosphorylated at Tyr439, a strictly conserved residue within the C-terminal HbYX motif of Rpt2 that is essential for 26S proteasome assembly. Unexpectedly, we found that Y439 phosphorylation depends on Rpt2 membrane localization mediated by its N-myristoylation. Multiple receptors tyrosine kinases can trigger Rpt2–Y439 phosphorylation by activating Src, a N-myristoylated tyrosine kinase. Src directly phosphorylates Rpt2–Y439 in vitro and negatively regulates 26S proteasome activity at cellular membranes, which can be reversed by the membrane-associated isoform of protein tyrosine phosphatase nonreceptor type 2 (PTPN2). In H1975 lung cancer cells with activated Src, blocking Rpt2–Y439 phosphorylation by the Y439F mutation conferred partial resistance to the Src inhibitor saracatinib both in vitro and in a mouse xenograft tumor model, and caused significant changes of cellular responses to saracatinib at the proteome level. Our study has defined a novel mechanism involved in the spatial regulation of proteasome function and provided new insights into tyrosine kinase inhibitor-based anticancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rpt2–Y439 phosphorylation perturbs 26S proteasome function.
Fig. 2: Rpt2 membrane localization is required for its tyrosine phosphorylation.
Fig. 3: Src phosphorylates Rpt2–Y439.
Fig. 4: Rpt2-pY439 is dephosphorylated by PTPN2.
Fig. 5: Altered responses to saracatinib in Rpt2–Y439F cells.
Fig. 6: H1975-Y439F tumors were less inhibited by saracatinib.

Similar content being viewed by others

References

  1. Finley D, Prado MA. The proteasome and its network engineering for adaptability. Cold Spring Harbor Perspect Biol. 2020;12:a033985.

  2. Schmidt M, Finley D. Regulation of proteasome activity in health and disease. Biochim Biophys Acta. 2014;1843:13–25.

    Article  CAS  PubMed  Google Scholar 

  3. Collins GA, Goldberg AL. The logic of the 26S proteasome. Cell. 2017;169:792–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Murata S, Yashiroda H, Tanaka K. Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol. 2009;10:104–15.

    Article  CAS  PubMed  Google Scholar 

  5. Budenholzer L, Cheng CL, Li Y, Hochstrasser M. Proteasome structure and assembly. J Mol Biol. 2017;429:3500–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem. 2009;78:477–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bard JAM, Goodall EA, Greene ER, Jonsson E, Dong KC, Martin A. Structure and function of the 26S proteasome. Annu Rev Biochem. 2018;87:697–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eisele MR, Reed RG, Rudack T, Schweitzer A, Beck F, Nagy I, et al. Expanded coverage of the 26S proteasome conformational landscape reveals mechanisms of peptidase gating. Cell Rep. 2018;24:1301–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL. Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s alpha ring opens the gate for substrate entry. Mol Cell. 2007;27:731–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Park S, Li X, Kim HM, Singh CR, Tian G, Hoyt MA, et al. Reconfiguration of the proteasome during chaperone-mediated assembly. Nature. 2013;497:512–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Park S, Roelofs J, Kim W, Robert J, Schmidt M, Gygi SP, et al. Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature. 2009;459:866–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kumar B, Kim YC, DeMartino GN. The C terminus of Rpt3, an ATPase subunit of PA700 (19 S) regulatory complex, is essential for 26 S proteasome assembly but not for activation. J Biol Chem. 2010;285:39523–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo X, Huang X, Chen MJ. Reversible phosphorylation of the 26S proteasome. Protein cell. 2017;8:255–72.

    Article  PubMed  PubMed Central  Google Scholar 

  14. VerPlank JJS, Goldberg AL. Regulating protein breakdown through proteasome phosphorylation. Biochem J. 2017;474:3355–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li D, Dong Q, Tao Q, Gu J, Cui Y, Jiang X, et al. c-Abl regulates proteasome abundance by controlling the ubiquitin-proteasomal degradation of PSMA7 subunit. Cell Rep. 2015;10:484–96.

    Article  CAS  PubMed  Google Scholar 

  16. Liu X, Huang W, Li C, Li P, Yuan J, Li X, et al. Interaction between c-Abl and Arg tyrosine kinases and proteasome subunit PSMA7 regulates proteasome degradation. Mol Cell. 2006;22:317–27.

    Article  CAS  PubMed  Google Scholar 

  17. Hunter T. The genesis of tyrosine phosphorylation. Cold Spring Harb Perspect Biol. 2014;6:a020644.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kolch W, Pitt A. Functional proteomics to dissect tyrosine kinase signalling pathways in cancer. Nat Rev Cancer. 2010;10:618–29.

    Article  CAS  PubMed  Google Scholar 

  19. Tibes R, Trent J, Kurzrock R. Tyrosine kinase inhibitors and the dawn of molecular cancer therapeutics. Annu Rev Pharm Toxicol. 2005;45:357–84.

    Article  CAS  Google Scholar 

  20. Casaletto JB, McClatchey AI. Spatial regulation of receptor tyrosine kinases in development and cancer. Nat Rev Cancer. 2012;12:387–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sharma K, D’Souza RC, Tyanova S, Schaab C, Wisniewski JR, Cox J, et al. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep. 2014;8:1583–94.

    Article  CAS  PubMed  Google Scholar 

  22. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, et al. Protein tyrosine phosphatases in the human genome. Cell. 2004;117:699–711.

    Article  CAS  PubMed  Google Scholar 

  23. Sun H, Tonks NK. The coordinated action of protein tyrosine phosphatases and kinases in cell signaling. Trends Biochem Sci. 1994;19:480–5.

    Article  CAS  PubMed  Google Scholar 

  24. Julien SG, Dubé N, Hardy S, Tremblay ML. Inside the human cancer tyrosine phosphatome. Nat Rev Cancer. 2011;11:35–49.

    Article  CAS  PubMed  Google Scholar 

  25. Frankson R, Yu ZH, Bai Y, Li Q, Zhang RY, Zhang ZY. Therapeutic targeting of oncogenic tyrosine phosphatases. Cancer Res. 2017;77:5701–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang ZY. Drugging the undruggable: therapeutic potential of targeting protein tyrosine phosphatases. Acc Chem Res. 2017;50:122–9.

    Article  CAS  PubMed  Google Scholar 

  27. Thinon E, Serwa RA, Broncel M, Brannigan JA, Brassat U, Wright MH, et al. Global profiling of co- and post-translationally N-myristoylated proteomes in human cells. Nat Commun. 2014;5:4919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Muppirala M, Gupta V, Swarup G. Emerging role of tyrosine phosphatase, TCPTP, in the organelles of the early secretory pathway. Biochim biophys Acta. 2013;1833:1125–32.

    Article  CAS  PubMed  Google Scholar 

  29. Guerrero C, Milenkovic T, Przulj N, Kaiser P, Huang L. Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc Natl Acad Sci USA. 2008;105:13333–8.

    Article  CAS  PubMed  Google Scholar 

  30. Guo X, Wang X, Wang Z, Banerjee S, Yang J, Huang L, et al. Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat Cell Biol. 2016;18:202–12.

    Article  CAS  PubMed  Google Scholar 

  31. Huang X, Luan B, Wu J, Shi Y. An atomic structure of the human 26S proteasome. Nat Struct Mol Biol. 2016;23:778–85.

    Article  CAS  PubMed  Google Scholar 

  32. Shibahara T, Kawasaki H, Hirano H. Identification of the 19S regulatory particle subunits from the rice 26S proteasome. Eur J Biochem. 2002;269:1474–83.

    Article  CAS  PubMed  Google Scholar 

  33. Kimura Y, Saeki Y, Yokosawa H, Polevoda B, Sherman F, Hirano H. N-Terminal modifications of the 19S regulatory particle subunits of the yeast proteasome. Arch Biochem Biophys. 2003;409:341–8.

    Article  CAS  PubMed  Google Scholar 

  34. Kimura A, Kato Y, Hirano H. N-myristoylation of the Rpt2 subunit regulates intracellular localization of the yeast 26S proteasome. Biochemistry. 2012;51:8856–66.

    Article  CAS  PubMed  Google Scholar 

  35. Kimura A, Kurata Y, Nakabayashi J, Kagawa H, Hirano H. N-Myristoylation of the Rpt2 subunit of the yeast 26S proteasome is implicated in the subcellular compartment-specific protein quality control system. J Proteom. 2016;130:33–41.

    Article  CAS  Google Scholar 

  36. Zong C, Gomes AV, Drews O, Li X, Young GW, Berhane B, et al. Regulation of murine cardiac 20S proteasomes: role of associating partners. Circ Res. 2006;99:372–80.

    Article  CAS  PubMed  Google Scholar 

  37. Wang X, Chen CF, Baker PR, Chen PL, Kaiser P, Huang L. Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry. 2007;46:3553–65.

    Article  CAS  PubMed  Google Scholar 

  38. Kikuchi J, Iwafune Y, Akiyama T, Okayama A, Nakamura H, Arakawa N, et al. Co- and post-translational modifications of the 26S proteasome in yeast. Proteomics. 2010;10:2769–79.

    Article  CAS  PubMed  Google Scholar 

  39. Albert S, Schaffer M, Beck F, Mosalaganti S, Asano S, Thomas HF, et al. Proteasomes tether to two distinct sites at the nuclear pore complex. Proc Natl Acad Sci USA. 2017;114:13726–31.

    Article  CAS  PubMed  Google Scholar 

  40. Ramachandran KV, Margolis SS. A mammalian nervous-system-specific plasma membrane proteasome complex that modulates neuronal function. Nature Struct Mol Biol. 2017;24:419–430.

  41. Rivett AJ, Palmer A, Knecht E. Electron microscopic localization of the multicatalytic proteinase complex in rat liver and in cultured cells. J Histochem cytochem. 1992;40:1165–72.

    Article  CAS  PubMed  Google Scholar 

  42. Kohn AD, Summers SA, Birnbaum MJ, Roth RA. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem. 1996;271:31372–8.

    Article  CAS  PubMed  Google Scholar 

  43. Moritz A, Li Y, Guo A, Villen J, Wang Y, MacNeill J, et al. Akt-RSK-S6 kinase signaling networks activated by oncogenic receptor tyrosine kinases. Sci Signal. 2010;3:ra64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Cross DA, Ashton SE, Ghiorghiu S, Eberlein C, Nebhan CA, Spitzler PJ, et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 2014;4:1046–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang J, Gray NS. SnapShot: kinase inhibitors II. Mol Cell. 2015;58:710.e711.

    Google Scholar 

  46. Kamps MP, Buss JE, Sefton BM. Mutation of NH2-terminal glycine of p60src prevents both myristoylation and morphological transformation. Proc Natl Acad Sci USA. 1985;82:4625–8.

    Article  CAS  PubMed  Google Scholar 

  47. Li X, Zhao X, Fang Y, Jiang X, Duong T, Fan C, et al. Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem. 1998;273:34970–5.

    Article  CAS  PubMed  Google Scholar 

  48. Hein MY, Hubner NC, Poser I, Cox J, Nagaraj N, Toyoda Y, et al. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell. 2015;163:712–23.

    Article  CAS  PubMed  Google Scholar 

  49. St-Denis N, Gupta GD, Lin ZY, Gonzalez-Badillo B, Veri AO, Knight JDR, et al. Phenotypic and interaction profiling of the human phosphatases identifies diverse mitotic regulators. Cell Rep. 2016;17:2488–501.

    Article  CAS  PubMed  Google Scholar 

  50. Kumar P, Munnangi P, Chowdary KR, Shah VJ, Shinde SR, Kolli NR, et al. A human tyrosine phosphatase interactome mapped by proteomic profiling. J Proteome Res. 2017;16:2789–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. van Vliet C, Bukczynska PE, Puryer MA, Sadek CM, Shields BJ, Tremblay ML, et al. Selective regulation of tumor necrosis factor-induced Erk signaling by Src family kinases and the T cell protein tyrosine phosphatase. Nat Immunol. 2005;6:253–60.

    Article  PubMed  CAS  Google Scholar 

  52. Zhang S, Chen L, Luo Y, Gunawan A, Lawrence DS, Zhang ZY. Acquisition of a potent and selective TC-PTP inhibitor via a stepwise fluorophore-tagged combinatorial synthesis and screening strategy. J Am Chem Soc. 2009;131:13072–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ye DZ, Field J. PAK signaling in cancer. Cell Logist. 2012;2:105–16.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhen Y, Chunlei G, Wenzhi S, Shuangtao Z, Na L, Rongrong W, et al. Clinicopathologic significance of legumain overexpression in cancer: a systematic review and meta-analysis. Sci Rep. 2015;5:16599.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell. 2017;170:17–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Alevizopoulos K, Calogeropoulou T, Lang F. Stournaras C. Na+/K+ ATPase inhibitors in cancer. Curr drug targets. 2014;15:988–1000.

    Article  CAS  PubMed  Google Scholar 

  57. Formisano L, D’Amato V, Servetto A, Brillante S, Raimondo L, Di Mauro C, et al. Src inhibitors act through different mechanisms in Non-Small Cell Lung Cancer models depending on EGFR and RAS mutational status. Oncotarget. 2015;6:26090–103.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tanaka K, Fujiwara T, Kumatori A, Shin S, Yoshimura T, Ichihara A, et al. Molecular cloning of cDNA for proteasomes from rat liver: primary structure of component C3 with a possible tyrosine phosphorylation site. Biochemistry. 1990;29:3777–85.

    Article  CAS  PubMed  Google Scholar 

  59. Hemmis CW, Heard SC, Hill CP. Phosphorylation of Tyr-950 in the proteasome scaffolding protein RPN2 modulates its interaction with the ubiquitin receptor RPN13. J Biol Chem. 2019;294:9659–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tang M, Lu X, Zhang C, Du C, Cao L, Hou T, et al. Downregulation of SIRT7 by 5-fluorouracil induces radiosensitivity in human colorectal cancer. Theranostics. 2017;7:1346–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Scott JD, Pawson T. Cell signaling in space and time: where proteins come together and when they’re apart. Science. 2009;326:1220–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–34.

    Article  CAS  PubMed  Google Scholar 

  63. Kim YC, DeMartino GN. C termini of proteasomal ATPases play nonequivalent roles in cellular assembly of mammalian 26 S proteasome. J Biol Chem. 2011;286:26652–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Murata S, Takahama Y, Kasahara M, Tanaka K. The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nat Immunol. 2018;19:923–31.

    Article  CAS  PubMed  Google Scholar 

  65. Bose S, Brooks P, Mason GG, Rivett AJ. Gamma-interferon decreases the level of 26 S proteasomes and changes the pattern of phosphorylation. Biochem J. 2001;353:291–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu X, Xiao W, Zhang Y, Wiley SE, Zuo T, Zheng Y, et al. Reversible phosphorylation of Rpn1 regulates 26S proteasome assembly and function. Proc Natl Acad Sci USA. 2020;117:328–36.

    Article  CAS  PubMed  Google Scholar 

  67. Lokireddy S, Kukushkin NV, Goldberg AL. cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. Proc Natl Acad Sci USA. 2015;112:E7176–85.

    Article  CAS  PubMed  Google Scholar 

  68. Satoh K, Sasajima H, Nyoumura K-i, Yokosawa H, Sawada H. Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit. Biochemistry. 2000;40:314–9.

    Article  CAS  Google Scholar 

  69. Heun Y, Grundler Groterhorst K, Pogoda K, Kraemer BF, Pfeifer A, Pohl U, et al. The phosphatase SHP-2 activates HIF-1α in wounds in vivo by inhibition of 26S proteasome activity. Int J Mol Sci. 2019;20:4404–4416.

  70. Barr AJ. Protein tyrosine phosphatases as drug targets: strategies and challenges of inhibitor development. Future Med Chem. 2010;2:1563–76.

    Article  CAS  PubMed  Google Scholar 

  71. Wei J, Long L, Zheng W, Dhungana Y, Lim SA, Guy C, et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature. 2019;576:471–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature. 2017;547:413–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wiede F, Lu KH, Du X, Liang S, Hochheiser K, Dodd GT, et al. PTPN2 phosphatase deletion in T cells promotes anti-tumour immunity and CAR T-cell efficacy in solid tumours. Embo J. 2020;39:e103637.

    Article  CAS  PubMed  Google Scholar 

  74. Feng Y, Wang Y, Liu H, Liu Z, Mills C, Han Y, et al. Genetic variants of PTPN2 are associated with lung cancer risk: a re-analysis of eight GWASs in the TRICL-ILCCO consortium. Sci Rep. 2017;7:825.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Xin-Hua Feng, Hai Song, Bin Zhao (Life Sciences Institute, Zhejiang University, LSI-ZJU), Zhong-Yin Zhang (Purdue University), Shigeo Murata (The University of Tokyo), and Susan Lindquist (Massachusetts Institute of Technology) for crucial constructs, cell lines, and reagents. We are grateful for the critical and encouraging comments from Drs. Kun-Liang Guan, Anne-Claude Gingras, Benjamin Neel, Tony Hunter, and Tony Tiganis. We appreciate the technical assistance from Xiaorui Jiang, Fei Zhang, and the Core Facilities of LSI-ZJU. XG was supported by Natural Science Foundation of China (31671391, 31870762), Zhejiang Natural Science Foundation (LR18C050001), Fundamental Research Funds for the Central Universities (2016QN81011), and the startup funding from Zhejiang University. BY was funded by Natural Science Foundation of China (91953103). ZW was supported by Natural Science Foundation of China (31671039) and National Key Research and Development Plan of the Ministry of Science and Technology of China (2016YF0501000). LH was funded by NIH (R01GM074830).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiping Wang or Xing Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Zhang, Y., Shu, X. et al. Proteasome regulation by reversible tyrosine phosphorylation at the membrane. Oncogene 40, 1942–1956 (2021). https://doi.org/10.1038/s41388-021-01674-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01674-z

Search

Quick links