Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tumor-derived osteopontin drives the resident fibroblast to myofibroblast differentiation through Twist1 to promote breast cancer progression


Tumor-stroma interactions are important determinants for the disease course in cancer. While stromal influence has been known to often play a tumor-promoting role, incomplete mechanistic insight into this phenomenon has prevented its therapeutic targeting. Stromal fibroblasts can be activated by tumor cells to differentiate into cancer-associated fibroblasts (CAFs), that exhibit the traits of myofibroblasts, and in turn, they increase cancer aggressiveness. Here, we report the crosstalk between the cancer cells and stromal fibroblasts that leads to tumor progression. The process is initiated by secretion of a chemokine like protein, osteopontin (OPN) from the cancer cells that differentiates the fibroblasts to myofibroblasts. Tumor-derived OPN achieves this transition by engaging CD44 and αvβ3 integrins on the fibroblast surface, which mediates signaling via Akt and ERK to induce Twist1-dependent gene expression. The OPN-driven CAFs then secrete CXCL12, which in turn triggers epithelial to mesenchymal transition (EMT) in the tumor cells. OPN, produced by the cancer cells, and CXCL12, secreted by activated fibroblasts, are necessary and sufficient to perpetuate the crosstalk. Knocking out OPN in carcinogen-induced mammary tumors or knocking down OPN in cancer cells and fibroblast co-implanted xenografts abrogates myofibroblast differentiation, Twist1, and CXCL12 expression. OPN expression is correlated with CAF-specific gene signature as shown by breast tumor tissue microarray consisting of 100 patient specimens. Bioinformatics analyses have confirmed that the expression of OPN is significantly correlated with the expression of myofibroblast-specific markers as demonstrated in human breast carcinoma dataset of 2509 patients. Our findings describe OPN and CXCL12 act as compelling targets to curb the tumor-promoting features of the stromal components and further suggested that OPN-regulated CXCL12 network might act as potential therapeutic target for the management of CAF-mediated breast cancer progression.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Breast cancer cell-derived OPN increases migratory ability and upregulates myofibroblast-specific marker expressions in fibroblasts.
Fig. 2: OPN is sufficient to reprogram normal fibroblasts into myofibroblasts.
Fig. 3: Tumor-derived OPN induces myofibroblast differentiation in a co-implanted xenograft model.
Fig. 4: OPN-educated fibroblasts induce cancer progression via CXCL12 (SDF-1) expression.
Fig. 5: Correlation of OPN with expression of myofibroblast-specific markers in human breast cancer tissues.
Fig. 6: Molecular mechanisms underlying OPN-induced CAF trans-differentiation.


  1. 1.

    Polyak K. Breast cancer: origins and evolution. J Clin Investig. 2007;117:3155–63.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Bremnes RM, Dønnem T, Al-Saad S, Al-Shibli K, Andersen S, Sirera R, et al. The role of tumor stroma in cancer progression and prognosis: emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J Thorac Oncol. 2011;6:209–17.

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Parrinello S, Coppe JP, Krtolica A, Campisi J. Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci. 2005;118:485–96.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16:582–98.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res. 2008;68:4331–4339.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Lee KW, Yeo SY, Sung CO, Kim SH. Twist1 is a key regulator of cancer-associated fibroblasts. Cancer Res. 2015;75:73–85.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Karagiannis GS, Poutahidis T, Erdman SE, Kirsch R, Riddell RH, Diamandis EP. Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol Cancer Res. 2012;10:1403–18.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Madar S, Goldstein I, Rotter V. Cancer associated fibroblasts’–more than meets the eye. Trends Mol Med. 2013;19:447–53.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Sung CO, Lee KW, Han S, Kim SH. Twist1 is up-regulated in gastric cancer associated fibroblasts with poor clinical outcomes. Am J Pathol. 2011;179:1827–38.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335–48.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell. 2018;33:463–79.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Özdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 2014;25:719–34.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. 13.

    Bandopadhyay M, Bulbule A, Butti R, Chakraborty G, Ghorpade P, Ghosh P, et al. Osteopontin as a therapeutic target for cancer. Expert Opin Ther Targets. 2014;18:883–95.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Lenga Y, Koh A, Perera AS, McCulloch CA, Sodek J, Zohar R. Osteopontin expression is required for myofibroblast differentiation. Circ Res. 2008;102:319–27.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Tuck AB, Chambers AF, Allan AL. Osteopontin overexpression in breast cancer: knowledge gained and possible implications for clinical management. J Cell Biochem. 2007;102:859–68.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Butti R, Ghosh P, Totakura KVS, Venkata RNN, Nimma R, Kundu GC. Role of osteopontin in tumor microenvironment: a new paradigm in cancer therapy. Multi-targeted approach to treatment of cancer. Adis, Cham; 2015. p. 113–25.

  17. 17.

    Sharon Y, Raz Y, Cohen N, Ben-Shmuel A, Schwartz H, Geiger T, et al. Tumor-derived osteopontin reprograms normal mammary fibroblasts to promote inflammation and tumor growth in breast cancer. Cancer Res. 2015;75:963–73.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Avgustinova A, Iravani M, Robertson D, Fearns A, Gao Q, Klingbeil P, et al. Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness. Nat Commun. 2016;7:10305.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Räsänen K, Vaheri A. Activation of fibroblasts in cancer stroma. Exp Cell Res. 2010;316:2713–22.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Kale S, Raja R, Thorat D, Soundararajan G, Patil TV, Kundu GC. Osteopontin signaling upregulates cyclooxygenase-2 expression in tumor-associated macrophages leading to enhanced angiogenesis and melanoma growth via α9β1 integrin. Oncogene. 2014;33:2295–306.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Castello LM, Raineri D, Salmi L, Clemente N, Vaschetto R, Quaglia M, et al. Osteopontin at the crossroads of inflammation and tumor progression. Mediators Inflamm. 2017;2017:4049098.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. 22.

    Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, et al. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci USA. 2010;107:20009–20014.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–W102.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. 25.

    Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

    PubMed  Article  Google Scholar 

  26. 26.

    Rangaswami H, Bulbule A, Kundu GC. Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol. 2006;16:79–87.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    McCarthy JB, El-Ashry D, Turley EAHyaluronan. Cancer-associated fibroblasts and the tumor microenvironment in malignant progression. Front Cell Dev Biol. 2018;6:48.

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Isenmann S, Arthur A, Zannettino ACW, Turner JL, Shi S, Glackin CA, et al. TWIST family of basic helix‐loop‐helix transcription factors mediate human mesenchymal stem cell growth and commitment. Stem Cells. 2009;27:2457–68.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Mikheeva SA, Mikheev AM, Petit A, Beyer R, Oxford RG, Khorasani L, et al. TWIST1 promotes invasion through mesenchymal change in human glioblastoma. Mol Cancer. 2010;9:194.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30.

    Ray P, Stacer AC, Fenner J, Cavnar SP, Meguiar K, Brown M, et al. CXCL12-γ in primary tumors drives breast cancer metastasis. Oncogene. 2015;34:2043–51.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Mi Z, Bhattacharya SD, Kim VM, Guo H, Talbot LJ, Kuo PC. Osteopontin promotes CCL5-mesenchymal stromal cell-mediated breast cancer metastasis. Carcinogenesis. 2011;32:477–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Xu YY, Zhang YY, Lum WF, Mi YJ, Chen YQ. Prognostic value of osteopontin expression in breast cancer: a meta-analysis. Mol Clin Oncol. 2015;3:357–62.

    PubMed  Article  Google Scholar 

  33. 33.

    Li NY, Weber CE, Mi Z, Wai PY, Cuevas BD, Kuo PC. Osteopontin up-regulates critical epithelial-mesenchymal transition transcription factors to induce an aggressive breast cancer phenotype. J Am Coll Surg. 2015;221:642.

  34. 34.

    Kothari AN, Arffa ML, Chang V, Blackwell RH, Syn WK, Zhang J, et al. Osteopontin-A master regulator of epithelial-mesenchymal transition. J Clin Med. 2016;5:39.

    PubMed Central  Article  CAS  Google Scholar 

  35. 35.

    Ng L, Wan TMH, Lam CSC, Chow AKM, Wong SKM, Man JHW, et al. Post-operative plasma osteopontin predicts distant metastasis in human colorectal cancer. PLOS ONE. 2015;10:e0126219.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. 36.

    Pio GM, Xia Y, Piaseczny MM, Chu JE, Allan AL. Soluble bone-derived osteopontin promotes migration and stem-like behavior of breast cancer cells. PLOS ONE. 2017;12:e0177640.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. 37.

    Pietras A, Katz AM, Ekström EJ, Wee B, Halliday JJ, Pitter KL, et al. Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell. 2014;14:357–369.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Xu K, Tian X, Oh SY, Mavossaghi M, Naber SP, Kuperwasser C, et al. The fibroblast Tiam1-osteopontin pathway modulates breast cancer invasion and metastasis. Breast Cancer Res. 2016;18:14.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. 39.

    Johnson GA, Burghardt RC, Bazer FW, Spencer TE. Osteopontin: roles in implantation and placentation. Biol Reprod. 2003;69:1458–71.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Martin MA, Bhatia M. Analysis of the human fetal liver hematopoietic microenvironment. Stem Cells Dev. 2005;14:493–504.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Cao H, Cao B, Heazlewood CK, Domingues M, Sun X, Debele E, et al. Osteopontin is an important regulative component of the fetal bone marrow hematopoietic stem cell niche. Cells. 2019;8:985.

    CAS  PubMed Central  Article  Google Scholar 

  42. 42.

    Zhang R, Pan X, Huang Z, Weber GF, Zhang G. Osteopontin enhances the expression and activity of MMP-2 via the SDF-1/CXCR4 axis in hepatocellular carcinoma cell lines. PLOS ONE. 2011;6:e23831.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Dong CY, Liu XY, Wang N, Wang LN, Yang BX, Ren Q, et al. Twist-1, a novel regulator of hematopoietic stem cell self-renewal and myeloid lineage development. Stem Cells. 2014;32:3173–82.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Pang H, Cai L, Yang Y, Chen X, Sui G, Zhao C. Knockdown of osteopontin chemosensitizes MDA-MB-231 cells to cyclophosphamide by enhancing apoptosis through activating p38 MAPK pathway. Cancer Biother Radiopharm. 2011;26:165–73.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Graessmann M, Berg B, Fuchs B, Klein A, Graessmann A. Chemotherapy resistance of mouse WAP-SVT/t breast cancer cells is mediated by osteopontin, inhibiting apoptosis downstream of caspase-3. Oncogene. 2007;26:2840–50.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Das S, Samant RS, Shevde LA. Nonclassical activation of Hedgehog signaling enhances multidrug resistance and makes cancer cells refractory to Smoothened-targeting Hedgehog inhibition. J Biol Chem. 2013;288:11824–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Sangaletti S, Tripodo C, Sandri S, Torselli I, Vitali C, Ratti C, et al. Osteopontin shapes immunosuppression in the metastatic niche. Cancer Res. 2014;74:4706–19.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Klement JD, Paschall AV, Redd PS, Ibrahim ML, Lu C, Yang D, et al. An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. J Clin Investig. 2018;128:5549–5560.

    PubMed  Article  Google Scholar 

  49. 49.

    Belev B, Vrbanec D. Hormonal resistance in breast-and prostate cancer. Period Biol. 2012;114:511–517.

    Google Scholar 

  50. 50.

    Hellerstedt BA, Pienta KJ. The current state of hormonal therapy for prostate cancer. CA Cancer J Clin. 2002;52:154–79.

    PubMed  Article  Google Scholar 

  51. 51.

    Dine J, Gordon R, Shames Y, Kasler MK, Barton-Burke M. Immune checkpoint inhibitors: an innovation in immunotherapy for the treatment and management of patients with cancer. Asia Pac J Oncol Nurs. 2017;4:127–35.

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Bossung V, Harbeck N. Angiogenesis inhibitors in the management of breast cancer. Curr Opin Obstet Gynecol. 2010;22:79–86.

    PubMed  Article  Google Scholar 

  53. 53.

    Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol. 2013;15:637–46.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Kumar S, Patil HS, Sharma P, Kumar D, Dasari S, Puranik VG, et al. Andrographolide inhibits osteopontin expression and breast tumor growth through down regulation of PI3 kinase/Akt signaling pathway. Curr Mol Med. 2012;12:952–66.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Kumar D, Kumar S, Gorain M, Tomar D, Patil HS, Radharani NNV, et al. Notch1-MAPK signaling axis regulates CD133+ cancer stem cell-mediated melanoma growth and angiogenesis. J Invest Dermatol. 2016;136:2462–74.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Chakraborty G, Jain S, Patil TV, Kundu GC. Down‐regulation of osteopontin attenuates breast tumour progression in vivo. J Cell Mol Med. 2008;12:2305–18.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Chakraborty G, Jain S, Kundu GC. Osteopontin promotes vascular endothelial growth factor-dependent breast tumor growth and angiogenesis via autocrine and paracrine mechanisms. Cancer Res. 2008;68:152–61.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Kumar V, Behera R, Lohite K, Karnik S, Kundu GC. p38 kinase is crucial for osteopontin-induced furin expression that supports cervical cancer progression. Cancer Res. 2010;70:10381–91.

    CAS  PubMed  Article  Google Scholar 

Download references


This work was primarily supported by National Centre for Cell Science, Pune, India (to GCK). RB, RN, and DT were supported by Council of Scientific and Industrial Research (CSIR), Govt. of India. VPG is supported by Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Govt. of India. This research was supported in part by the Intramural Research Program of the NIH, National Institute of Ageing.

Author information




RB designed and performed most of the experiments. RN, TVS, AB, VPG, DT, and DK performed some of the experiments. GK analyzed patient datasets. AM, SG, and TP helped in acquiring patient samples and clinical data analysis. GFW was involved in writing and critically reading the manuscript. GCK supervised and designed the whole study and critically assessed the manuscript.

Corresponding author

Correspondence to Gopal C. Kundu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Butti, R., Nimma, R., Kundu, G. et al. Tumor-derived osteopontin drives the resident fibroblast to myofibroblast differentiation through Twist1 to promote breast cancer progression. Oncogene 40, 2002–2017 (2021).

Download citation


Quick links