Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

DNA polymerase beta modulates cancer progression via enhancing CDH13 expression by promoter demethylation


DNA polymerase β (Pol β) plays a critical role in DNA base excision repair (BER), which is involved in maintaining genomic stability and in the modulation of DNA demethylation. Numerous studies implicated deficiency of Pol β in the genomic instability and dysregulation of genes expression, leading to affecting initiation of cancer. However, the role of Pol β in cancer progression is still unclear. Here, we show that Pol β depresses migratory and invasive capabilities of both breast and lung carcinomas, which were evident in human breast and lung cancer cells, as well as in mouse xenograft tumors. On the molecular basis, overexpression of Pol β enhanced expression of CDH13, which show function on cell adhesion and migration. Knockdown of CDH13 restores the migratory, invasive capabilities and angiogenesis in tumor, which gets impaired by Pol β. According to the function of BER on modulation of DNA demethylation, our studies on CDH13 expression and the DNA methylation levels of CDH13 promoter suggested that Pol β promotes expression of CDH13 by augmenting DNA demethylation of CDH13 promoter. Our findings elucidated a novel possibility that Pol β impair cancer cell metastasis during cancer progression and shed light on the role of Pol β in cancer therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Pol β expression correlates with cancer progression and cancer cells motility.
Fig. 2: Pol β depresses tumor metastasis and invasion in in xenograft mouse model.
Fig. 3: Deficiency of Pol β enhances tumor metastasis.
Fig. 4: Pol β suppresses cancer cell migration by regulating gene expression of CDH13.
Fig. 5: Pol β suppression of tumor cell motility depends on CDH13.
Fig. 6: Deletion of CDH13 restores the repressed angiogenesis by Pol β.
Fig. 7: Pol β impedes DNA methylation of CDH13 promoter leading to promote CDH13 expression.


  1. 1.

    Lu X, Liu R, Wang M, Kumar AK, Pan F, He L, et al. MicroRNA-140 impedes DNA repair by targeting FEN1 and enhances chemotherapeutic response in breast cancer. Oncogene. 2020;39:234–47.

  2. 2.

    Zhou T, Pan FY, Cao Y, Han Y, Zhao J, Sun HF, et al. R152C DNA Pol beta mutation impairs base excision repair and induces cellular transformation. Oncotarget. 2016;7:6902–15.

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Wang M, Li E, Lin L, Kumar AK, Pan F, He L, et al. Enhanced activity of variant DNA polymerase beta (D160G) contributes to cisplatin therapy by impeding the efficiency of NER. Mol Cancer Res. 2019;17:2077–88.

  4. 4.

    Broustas CG, Lieberman HB. DNA damage response genes and the development of cancer metastasis. Radiat Res. 2014;181:111–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Rytelewski M, Tong JG, Buensuceso A, Leong HS, Maleki Vareki S, Figueredo R, et al. BRCA2 inhibition enhances cisplatin-mediated alterations in tumor cell proliferation, metabolism, and metastasis. Mol Oncol. 2014;8:1429–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Wiegmans AP, Al-Ejeh F, Chee N, Yap PY, Gorski JJ, Da Silva L, et al. Rad51 supports triple negative breast cancer metastasis. Oncotarget. 2014;5:3261–72.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Choi EB, Yang AY, Kim SC, Lee J, Choi JK, Choi C, et al. PARP1 enhances lung adenocarcinoma metastasis by novel mechanisms independent of DNA repair. Oncogene. 2016;35:4569–79.

    CAS  PubMed  Google Scholar 

  8. 8.

    Eccles SA, Welch DR. Metastasis: recent discoveries and novel treatment strategies. Lancet. 2007;369:1742–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147:275–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196:395–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Pignatelli M, Vessey CJ. Adhesion molecules: novel molecular tools in tumor pathology. Hum Pathol. 1994;25:849–56.

    CAS  PubMed  Google Scholar 

  12. 12.

    Makrilia N, Kollias A, Manolopoulos L, Syrigos K. Cell adhesion molecules: role and clinical significance in cancer. Cancer Investig. 2009;27:1023–37.

    CAS  Google Scholar 

  13. 13.

    Nollet F, Kools P, van Roy F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol. 2000;299:551–72.

    CAS  PubMed  Google Scholar 

  14. 14.

    Gugnoni M, Sancisi V, Gandolfi G, Manzotti G, Ragazzi M, Giordano D, et al. Cadherin-6 promotes EMT and cancer metastasis by restraining autophagy. Oncogene. 2017;36:667–77.

    CAS  PubMed  Google Scholar 

  15. 15.

    Chan DW, Lee JM, Chan PC, Ng IO. Genetic and epigenetic inactivation of T-cadherin in human hepatocellular carcinoma cells. Int J Cancer. 2008;123:1043–52.

    CAS  PubMed  Google Scholar 

  16. 16.

    Kuphal S, Martyn AC, Pedley J, Crowther LM, Bonazzi VF, Parsons PG, et al. H-cadherin expression reduces invasion of malignant melanoma. Pigment Cell Melanoma Res. 2009;22:296–306.

    CAS  PubMed  Google Scholar 

  17. 17.

    Ye M, Huang T, Li J, Zhou C, Yang P, Ni C, et al. Role of CDH13 promoter methylation in the carcinogenesis, progression, and prognosis of colorectal cancer: A systematic meta-analysis under PRISMA guidelines. Medicine. 2017;96:e5956.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Chen F, Huang T, Ren Y, Wei J, Lou Z, Wang X, et al. Clinical significance of CDH13 promoter methylation as a biomarker for bladder cancer: a meta-analysis. BMC Urol. 2016;16:52.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Nicolay NH, Helleday T, Sharma RA. Biological relevance of DNA polymerase beta and translesion synthesis polymerases to cancer and its treatment. Curr Mol Pharmacol. 2012;5:54–67.

    CAS  PubMed  Google Scholar 

  20. 20.

    Yamtich J, Sweasy JB. DNA polymerase family X: function, structure, and cellular roles. Biochim et Biophys Acta. 2010;1804:1136–50.

    CAS  Google Scholar 

  21. 21.

    Li J, Luthra S, Wang XH, Chandran UR, Sobol RW. Transcriptional profiling reveals elevated Sox2 in DNA polymerase ss null mouse embryonic fibroblasts. Am J Cancer Res. 2012;2:699–713.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Guo Z, Zheng L, Dai H, Zhou M, Xu H, Shen B. Human DNA polymerase beta polymorphism, Arg137Gln, impairs its polymerase activity and interaction with PCNA and the cellular base excision repair capacity. Nucleic Acids Res. 2009;37:3431–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Bergoglio V, Pillaire MJ, Lacroix-Triki M, Raynaud-Messina B, Canitrot Y, Bieth A, et al. Deregulated DNA polymerase beta induces chromosome instability and tumorigenesis. Cancer Res. 2002;62:3511–4.

    CAS  PubMed  Google Scholar 

  24. 24.

    Abdel-Fatah TM, Russell R, Agarwal D, Moseley P, Abayomi MA, Perry C, et al. DNA polymerase beta deficiency is linked to aggressive breast cancer: a comprehensive analysis of gene copy number, mRNA and protein expression in multiple cohorts. Mol Oncol. 2014;8:520–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Matakidou A, el Galta R, Webb EL, Rudd MF, Bridle H, Eisen T, et al. Genetic variation in the DNA repair genes is predictive of outcome in lung cancer. Hum Mol Genet. 2007;16:2333–40.

    CAS  PubMed  Google Scholar 

  26. 26.

    Tan X, Wu X, Ren S, Wang H, Li Z, Alshenawy W, et al. A point mutation in DNA polymerase beta (POLB) gene is associated with increased progesterone receptor (PR) expression and intraperitoneal metastasis in gastric cancer. J Cancer. 2016;7:1472–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Ju J, Chen A, Deng Y, Liu M, Wang Y, Wang Y, et al. NatD promotes lung cancer progression by preventing histone H4 serine phosphorylation to activate Slug expression. Nat Commun. 2017;8:928.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Zheng W, Li J, Wang X, Yuan Y, Zhang J, Xiu Z. Effects of Antarctic krill docosahexaenoic acid on MCF-7 cell migration and invasion induced by the interaction of CD95 with caveolin-1. Life Sci. 2018;192:270–7.

    CAS  PubMed  Google Scholar 

  29. 29.

    Vens C, Dahmen-Mooren E, Verwijs-Janssen M, Blyweert W, Graversen L, Bartelink H, et al. The role of DNA polymerase beta in determining sensitivity to ionizing radiation in human tumor cells. Nucleic Acids Res. 2002;30:2995–3004.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Weed SA, Parsons JT. Cortactin: coupling membrane dynamics to cortical actin assembly. Oncogene. 2001;20:6418–34.

    CAS  PubMed  Google Scholar 

  31. 31.

    Andreeva AV, Kutuzov MA. Cadherin 13 in cancer. Genes Chromoso Cancer. 2010;49:775–90.

    CAS  Google Scholar 

  32. 32.

    Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med. 2011;17:1359–70.

    CAS  PubMed  Google Scholar 

  33. 33.

    Rubina K, Kalinina N, Potekhina A, Efimenko A, Semina E, Poliakov A, et al. T-cadherin suppresses angiogenesis in vivo by inhibiting migration of endothelial cells. Angiogenesis. 2007;10:183–95.

    CAS  PubMed  Google Scholar 

  34. 34.

    Fletcher SC, Grou CP, Legrand AJ, Chen X, Soderstrom K, Poletto M, et al. Sp1 phosphorylation by ATM downregulates BER and promotes cell elimination in response to persistent DNA damage. Nucleic Acids Res. 2018;46:1834–46.

    CAS  PubMed  Google Scholar 

  35. 35.

    Sun H, He L, Wu H, Pan F, Wu X, Zhao J, et al. The FEN1 L209P mutation interferes with long-patch base excision repair and induces cellular transformation. Oncogene. 2017;36:194–207.

    CAS  PubMed  Google Scholar 

  36. 36.

    Yamtich J, Nemec AA, Keh A, Sweasy JB. A germline polymorphism of DNA polymerase beta induces genomic instability and cellular transformation. PLoS Genet. 2012;8:e1003052.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Levy N, Martz A, Bresson A, Spenlehauer C, de Murcia G, Menissier-de Murcia J. XRCC1 is phosphorylated by DNA-dependent protein kinase in response to DNA damage. Nucleic Acids Res. 2006;34:32–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333:1303–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Chen ZX, Riggs AD. DNA methylation and demethylation in mammals. J Biol Chem. 2011;286:18347–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Walsh CP, Xu GL. Cytosine methylation and DNA repair. Curr Top Microbiol Immunol. 2006;301:283–315.

    CAS  PubMed  Google Scholar 

  41. 41.

    Sobol RW. Genome instability caused by a germline mutation in the human DNA repair gene POLB. PLoS Genet. 2012;8:e1003086.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3:401–10.

    CAS  PubMed  Google Scholar 

  43. 43.

    Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3:453–8.

    CAS  PubMed  Google Scholar 

  44. 44.

    Weber AR, Krawczyk C, Robertson AB, Kusnierczyk A, Vagbo CB, Schuermann D, et al. Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Nat Commun. 2016;7:10806.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Hajkova P, Jeffries SJ, Lee C, Miller N, Jackson SP, Surani MA. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science. 2010;329:78–82.

    CAS  PubMed  Google Scholar 

  46. 46.

    Schar P, Fritsch O. DNA repair and the control of DNA methylation. Progress in drug research/Fortschritte der Arzneimittelforschung/Progres des recherches pharmaceutiques. Beilin, Germany: Springer; 2011;67. p. 51–68.

    Google Scholar 

Download references


The authors would like to thank Dr. Binghui Shen (Beckman Research Institute, City of Hope, Duarte, CA, USA) for the MEF cell lines. This work was supported by the National Natural Science Foundation of China (81872284), the Natural Science Foundation of Colleges and Universities in Jiangsu Province (19KJA180010), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information



Corresponding authors

Correspondence to Zhigang Hu or Zhigang Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Long, K., Li, E. et al. DNA polymerase beta modulates cancer progression via enhancing CDH13 expression by promoter demethylation. Oncogene 39, 5507–5519 (2020).

Download citation

Further reading


Quick links