Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pharmacologically targetable vulnerability in prostate cancer carrying RB1-SUCLA2 deletion

Abstract

RB1 gene is often homozygously deleted or mutated in prostate adenocarcinomas following acquirement of castration resistance and/or metastatic ability. We found that SUCLA2 gene is frequently involved in the deletion of the RB1 gene region in advanced prostate cancer. SUCLA2 constitutes the β-subunit of succinate CoA ligase heterodimer that reversibly converts succinyl CoA into succinate. We sought the possibility that deletion of SUCLA2 gives rise to a metabolic vulnerability that could be targeted therapeutically. We found a significant metabolic shift in SUCLA2-deleted prostate cancer cells, including lower mitochondrial respiratory activity. By screening a number of libraries for compounds that induce cell death selectively in SUCLA2-deficient prostate cancer cells, we identified thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone) and PMA (phorbol-12-myristate-13-acetate) from a natural compound library. These findings indicate that the metabolic vulnerability in SUCLA2-deficient prostate cancer cells is pharmacologically targetable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RB1 and SUCLA2 deletion in prostate cancer.
Fig. 2: Metabolomic features of SUCLA2-deleted prostate cancer cells.
Fig. 3: Metabolic characteristics of SUCLA2-deleted prostate cancer cells.
Fig. 4: Screening of small molecules that selectively kill SUCLA2-deleted prostate cancer cells.
Fig. 5: Thymoquinone suppresses SUCLA2-deficient prostate cancer.
Fig. 6: TQ induces cell death in SUCLA2-deficient cells irrespective of the RB1 status.

Similar content being viewed by others

References

  1. Kirby M, Hirst C, Crawford ED. Characterising the castration-resistant prostate cancer population: a systematic review. Int J Clin Pr. 2011;65:1180–92.

    Article  CAS  Google Scholar 

  2. Huang Y, Jiang X, Liang X, Jiang G. Molecular and cellular mechanisms of castration resistant prostate cancer. Oncol Lett. 2018;15:6063–76.

    PubMed  PubMed Central  Google Scholar 

  3. Crumbaker M, Khoja L, Joshua AM. AR Signaling and the PI3K pathway in prostate cancer. Cancers (Basel). 2017;9:34.

    Article  CAS  Google Scholar 

  4. Aparicio A, Den RB, Knudsen KE. Time to stratify? The retinoblastoma protein in castrate-resistant prostate cancer. Nat Rev Urol. 2011;8:562–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abida W, Cyrta J, Heller G, Prandi D, Armenia J, Coleman I, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci USA. 2019;116:11428–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S, Andrews JM, et al. Signatures of mutation and selection in the cancer genome. Nature. 2010;463:893–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dyson NJ. RB1: a prototype tumor suppressor and an enigma. Genes Dev. 2016;30:1492–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487:239–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beltran H, Yelensky R, Frampton GM, Park K, Downing SR, MacDonald TY, et al. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur Urol. 2013;63:920–6.

    Article  CAS  PubMed  Google Scholar 

  11. Frank S, Nelson P, Vasioukhin V. Recent advances in prostate cancer research: large-scale genomic analyses reveal novel driver mutations and DNA repair defects. F1000Res. 2018;7:1173.

    Article  CAS  Google Scholar 

  12. Barbieri CE, Bangma CH, Bjartell A, Catto JW, Culig Z, Gronberg H, et al. The mutational landscape of prostate cancer. Eur Urol. 2013;64:567–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Muller FL, Aquilanti EA, DePinho RA. Collateral Lethality: a new therapeutic strategy in oncology. Trends Cancer. 2015;1:161–73.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dey P, Baddour J, Muller F, Wu CC, Wang H, Liao WT, et al. Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer. Nature. 2017;542:119–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Muller FL, Colla S, Aquilanti E, Manzo VE, Genovese G, Lee J, et al. Passenger deletions generate therapeutic vulnerabilities in cancer. Nature. 2012;488:337–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johnson JD, Mehus JG, Tews K, Milavetz BI, Lambeth DO. Genetic evidence for the expression of ATP- and GTP-specific succinyl-CoA synthetases in multicellular eucaryotes. J Biol Chem. 1998;273:27580–6.

    Article  CAS  PubMed  Google Scholar 

  17. Besse A, Wu P, Bruni F, Donti T, Graham BH, Craigen WJ, et al. The GABA transaminase, ABAT, is essential for mitochondrial nucleoside metabolism. Cell Metab. 2015;21:417–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. El-Hattab AW, Scaglia F. Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options. NeuroTherapeutics. 2013;10:186–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matilainen S, Isohanni P, Euro L, Lonnqvist T, Pihko H, Kivela T, et al. Mitochondrial encephalomyopathy and retinoblastoma explained by compound heterozygosity of SUCLA2 point mutation and 13q14 deletion. Eur J Hum Genet. 2015;23:325–30.

    Article  CAS  PubMed  Google Scholar 

  20. Miller C, Wang L, Ostergaard E, Dan P, Saada A. The interplay between SUCLA2, SUCLG2, and mitochondrial DNA depletion. Biochim Biophys Acta. 2011;1812:625–9.

    Article  CAS  PubMed  Google Scholar 

  21. Dobolyi A, Ostergaard E, Bago AG, Doczi T, Palkovits M, Gal A, et al. Exclusive neuronal expression of SUCLA2 in the human brain. Brain Struct Funct. 2015;220:135–51.

    Article  CAS  PubMed  Google Scholar 

  22. Patel AB, de Graaf RA, Mason GF, Rothman DL, Shulman RG, Behar KL. The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc Natl Acad Sci USA. 2005;102:5588–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bookstein R, Shew JY, Chen PL, Scully P, Lee WH. Suppression of tumorigenicity of human prostate carcinoma cells by replacing a mutated RB gene. Science. 1990;247:712–5.

    Article  CAS  PubMed  Google Scholar 

  24. Boutagy NE, Rogers GW, Pyne ES, Ali MM, Hulver MW, Frisard MI. Using isolated mitochondria from minimal quantities of mouse skeletal muscle for high throughput microplate respiratory measurements. J Visualized Exp: JoVE. 2015;105:53217.

    Google Scholar 

  25. Frezza C, Zheng L, Folger O, Rajagopalan KN, MacKenzie ED, Jerby L, et al. Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature. 2011;477:225–8.

    Article  CAS  PubMed  Google Scholar 

  26. Pike Winer LS, Wu M. Rapid analysis of glycolytic and oxidative substrate flux of cancer cells in a microplate. PLoS ONE. 2014;9:e109916.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Mostofa AGM, Hossain MK, Basak D, Bin Sayeed MS. Thymoquinone as a potential adjuvant therapy for cancer treatment: evidence from preclinical studies. Front Pharmacol. 2017;8:295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gong X, Du J, Parsons SH, Merzoug FF, Webster Y, Iversen PW, et al. Aurora A kinase inhibition is synthetic lethal with loss of the RB1 tumor suppressor gene. Cancer Disco. 2019;9:248–63.

    Article  CAS  Google Scholar 

  29. Oser MG, Fonseca R, Chakraborty AA, Brough R, Spektor A, Jennings RB, et al. Cells lacking the RB1 tumor suppressor gene are hyperdependent on Aurora B kinase for survival. Cancer Disco. 2019;9:230–47.

    Article  CAS  Google Scholar 

  30. Witkiewicz AK, Chung S, Brough R, Vail P, Franco J, Lord CJ, et al. Targeting the vulnerability of RB tumor suppressor loss in triple-negative breast cancer. Cell Rep. 2018;22:1185–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brough R, Gulati A, Haider S, Kumar R, Campbell J, Knudsen E, et al. Identification of highly penetrant Rb-related synthetic lethal interactions in triple negative breast cancer. Oncogene. 2018;37:5701–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Knudsen ES, Zacksenhaus E. The vulnerability of RB loss in breast cancer: targeting a void in cell cycle control. Oncotarget. 2018;9:30940–1.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zacksenhaus E, Liu JC, Granieri L, Vorobieva I, Wang DY, Ghanbari-Azarnier R, et al. CDC25 as a common therapeutic target for triple-negative breast cancer - the challenges ahead. Mol Cell Oncol. 2018;5:e1481814.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Salah M, Nishimoto Y, Kohno S, Kondoh A, Kitajima S, Muranaka H. et al. An in vitro system to characterize prostate cancer progression identified signaling required for self-renewal. Mol Carcinog. 2015;55:1974–89.

    Article  PubMed  CAS  Google Scholar 

  35. Abou-Kheir WG, Hynes PG, Martin PL, Pierce R, Kelly K. Characterizing the contribution of stem/progenitor cells to tumorigenesis in the Pten-/-TP53-/- prostate cancer model. Stem Cells. 2010;28:2129–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou Z, Flesken-Nikitin A, Corney DC, Wang W, Goodrich DW, Roy-Burman P, et al. Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res. 2006;66:7889–98.

    Article  CAS  PubMed  Google Scholar 

  37. Huggins C. Endocrine control of prostatic cancer. Science. 1943;97:541–4.

    Article  CAS  PubMed  Google Scholar 

  38. Sharma A, Yeow WS, Ertel A, Coleman I, Clegg N, Thangavel C, et al. The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. J Clin Investig. 2010;120:4478–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gao S, Gao Y, He HH, Han D, Han W, Avery A, et al. Androgen receptor tumor suppressor function is mediated by recruitment of retinoblastoma protein. Cell Rep. 2016;17:966–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Manning AL, Dyson NJ. RB: mitotic implications of a tumour suppressor. Nat Rev Cancer. 2012;12:220–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tort F, Bartkova J, Sehested M, Orntoft T, Lukas J, Bartek J. Retinoblastoma pathway defects show differential ability to activate the constitutive DNA damage response in human tumorigenesis. Cancer Res. 2006;66:10258–63.

    Article  CAS  PubMed  Google Scholar 

  42. Donti TR, Stromberger C, Ge M, Eldin KW, Craigen WJ, Graham BH. Screen for abnormal mitochondrial phenotypes in mouse embryonic stem cells identifies a model for succinyl-CoA ligase deficiency and mtDNA depletion. Dis Model Mech. 2014;7:271–80.

    PubMed  Google Scholar 

  43. Zhao Y, Tian J, Sui S, Yuan X, Chen H, Qu C, et al. Loss of succinyl-CoA synthase ADP-forming beta subunit disrupts mtDNA stability and mitochondrial dynamics in neurons. Sci Rep. 2017;7:7169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Jones RA, Robinson TJ, Liu JC, Shrestha M, Voisin V, Ju Y, et al. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation. J Clin Investig. 2016;126:3739–57.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Scime A, Grenier G, Huh MS, Gillespie MA, Bevilacqua L, Harper ME, et al. Rb and p107 regulate preadipocyte differentiation into white versus brown fat through repression of PGC-1alpha. Cell Metab. 2005;2:283–95.

    Article  CAS  PubMed  Google Scholar 

  46. Varaljai R, Islam AB, Beshiri ML, Rehman J, Lopez-Bigas N, Benevolenskaya EV. Increased mitochondrial function downstream from KDM5A histone demethylase rescues differentiation in pRB-deficient cells. Genes Dev. 2015;29:1817–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sankaran VG, Orkin SH, Walkley CR. Rb intrinsically promotes erythropoiesis by coupling cell cycle exit with mitochondrial biogenesis. Genes Dev. 2008;22:463–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nicolay BN, Danielian PS, Kottakis F, Lapek JD, Jr. Sanidas I, Miles WO, et al. Proteomic analysis of pRb loss highlights a signature of decreased mitochondrial oxidative phosphorylation. Genes Dev. 2015;29:1875–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hecker E. Phorbol esters from croton oil. Chemical nature and biological activities. Die Naturwissenschaften. 1967;54:282–4.

    Article  CAS  PubMed  Google Scholar 

  50. Van Duuren BL. Tumor-promoting agents in two-stage carcinogenesis. Prog Exp tumor Res. 1969;11:31–68.

    Article  PubMed  Google Scholar 

  51. Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982;257:7847–51.

    Article  CAS  PubMed  Google Scholar 

  52. Al-Amri M, A. M., MBBS P, A. O. B. Phase I safety and clinical activity study of thymoquinone in patients with advanced refractory malignant disease. Shiraz E-Med J (Res Artic). 2009;10:107–11.

    Google Scholar 

  53. Salomi MJ, Nair SC, Panikkar KR. Inhibitory effects of Nigella sativa and saffron (Crocus sativus) on chemical carcinogenesis in mice. Nutr Cancer. 1991;16:67–72.

    Article  CAS  PubMed  Google Scholar 

  54. Kundu J, Kim DH, Kundu JK, Chun KS. Thymoquinone induces heme oxygenase-1 expression in HaCaT cells via Nrf2/ARE activation: Akt and AMPKalpha as upstream targets. Food Chem Toxicol. 2014;65:18–26.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang L, Bai Y, Yang Y. Thymoquinone chemosensitizes colon cancer cells through inhibition of NF-kappaB. Oncol Lett. 2016;12:2840–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yi T, Cho SG, Yi Z, Pang X, Rodriguez M, Wang Y, et al. Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Mol Cancer Therapeutics. 2008;7:1789–96.

    Article  CAS  Google Scholar 

  57. Carrozzo R, Dionisi-Vici C, Steuerwald U, Lucioli S, Deodato F, Di Giandomenico S, et al. SUCLA2 mutations are associated with mild methylmalonic aciduria, Leigh-like encephalomyopathy, dystonia and deafness. Brain: J Neurol. 2007;130:862–74.

    Article  Google Scholar 

  58. Hirotsu T, Sonoda H, Uozumi T, Shinden Y, Mimori K, Maehara Y, et al. A highly accurate inclusive cancer screening test using Caenorhabditis elegans scent detection. PLoS ONE. 2015;10:e0118699.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Ueda Y, Kawamoto K, Konno M, Noguchi K, Kaifuchi S, Satoh T, et al. Application of C. elegans cancer screening test for the detection of pancreatic tumor in genetically engineered mice. Oncotarget. 2019;10:5412–8.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ohmiya H, Vitezic M, Frith MC, Itoh M, Carninci P, Forrest AR, et al. RECLU: a pipeline to discover reproducible transcriptional start sites and their alternative regulation using capped analysis of gene expression (CAGE). BMC Genom. 2014;15:269.

    Article  CAS  Google Scholar 

  61. Kadota K, Nakai Y, Shimizu K. A weighted average difference method for detecting differentially expressed genes from microarray data. Algorithms Mol Biol. 2008;3:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Li F, Kitajima S, Kohno S, Yoshida A, Tange S, Sasaki S, et al. Retinoblastoma inactivation induces a protumoral microenvironment via enhanced CCL2 secretion. Cancer Res. 2019;79:3903–15.

    Article  CAS  PubMed  Google Scholar 

  63. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Soga T, Baran R, Suematsu M, Ueno Y, Ikeda S, Sakurakawa T, et al. Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J Biol Chem. 2006;281:16768–76.

    Article  CAS  PubMed  Google Scholar 

  65. Soga T, Igarashi K, Ito C, Mizobuchi K, Zimmermann HP, Tomita M. Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry. Anal Chem. 2009;81:6165–74.

    Article  CAS  PubMed  Google Scholar 

  66. Frezza C, Cipolat S, Scorrano L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc. 2007;2:287–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. Y. Hirota and S. Tsutsumi for the substantial contribution to the initiation of work, Dr. A. Mizokami for helpful discussion, and Dr. Y. Watanabe for suggestion on research direction. This study was supported by Funding Program for Next Generation World-Leading Researchers (LS049) from cabinet office of Japan, Grant-in-Aid for Scientific Research (17H03576, 17K19586 and 19K22555 to CT, and 17K14992 and 20K07612 to SK) from MEXT, Project for Cancer Research and Therapeutic (P-CREATE) (19cm0106164h0001) from Japan Agency for Medical Research and Development (AMED), and TaNeDS (C1010568) and a collaborative research fund (C1010818) from Daiichi-Sankyo Co. Ltd. SK was supported by a Senior Principal Research Fellowship from the National Health & Medical Research Council of Australia (GNT 1103006).

Author information

Authors and Affiliations

Authors

Contributions

SK conceived the idea, designed and performed experiments, analyzed data, and wrote the paper. PL designed and performed experiments, analyzed data, and wrote the paper. NN provided technical help. YW helped design the experiments. SK provided intellectual input, edited and critically revised the paper. TS performed metabolomic experiments and analyzed data. CT conceived the idea, helped design the experiments, obtained funding for the study, and helped draft and critically revised the paper.

Corresponding authors

Correspondence to Susumu Kohno or Chiaki Takahashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohno, S., Linn, P., Nagatani, N. et al. Pharmacologically targetable vulnerability in prostate cancer carrying RB1-SUCLA2 deletion. Oncogene 39, 5690–5707 (2020). https://doi.org/10.1038/s41388-020-1381-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1381-6

Search

Quick links