Different impact of calreticulin mutations on human hematopoiesis in myeloproliferative neoplasms

Abstract

Mutations of calreticulin (CALRm) define a subtype of myeloproliferative neoplasms (MPN). We studied the biological and genetic features of CALR-mutated essential thrombocythemia and myelofibrosis patients. In most cases, CALRm were found in granulocytes, monocytes, B and NK cells, but also in T cells. However, the type 1 CALRm spreads more easily than the type 2 CALRm in lymphoid cells. The CALRm were also associated with an early clonal dominance at the level of hematopoietic stem and progenitor cells (HSPC) with no significant increase during granulo/monocytic differentiation in most cases. Moreover, we found that half of type 2 CALRm patients harbors some homozygous progenitors. Those patients were associated with a higher clonal dominance during granulo/monocytic differentiation than patients with only heterozygous type 2 CALRm progenitors. When associated mutations were present, CALRm were the first genetic event suggesting that they are both the initiating and phenotypic event. In blood, type 1 CALRm led to a greater increased number of all types of progenitors compared with the type 2 CALRm. However, both types of CALRm induced an increase in megakaryocytic progenitors associated with a ruxolitinib-sensitive independent growth and with a mild constitutive signaling in megakaryocytes. At the transcriptional level, type 1 CALRm seems to deregulate more pathways than the type 2 CALRm in megakaryocytes. Altogether, our results show that CALRm modify both the HSPC and megakaryocyte biology with a stronger effect for type 1 than for type 2 CALRm.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: CALRm are present in all hematopoietic cells.
Fig. 2: CALRm harbor a high clonal dominance at the progenitor cell level.
Fig. 3: CALRm are present at similar VAF in progenitors and mature cells.
Fig. 4: CALRm is the first event in hematopoiesis.
Fig. 5: CALRm induce a spontaneous growth of megakaryocytic progenitors dependent on JAK2 and PI3K.
Fig. 6: CALR type 1 mutation induces constitutive signaling.
Fig. 7: CALR type 1 and type 2 mutations induce mild gene expression deregulation in megakaryocytes.

References

  1. 1.

    James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–8.

    CAS  PubMed  Google Scholar 

  2. 2.

    Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl J Med. 2005;352:1779–90.

    CAS  PubMed  Google Scholar 

  3. 3.

    Cabagnols X, Favale F, Pasquier F, Messaoudi K, Defour JP, Ianotto JC, et al. Presence of atypical thrombopoietin receptor (MPL) mutations in triple-negative essential thrombocythemia patients. Blood. 2016;127:333–42.

    CAS  PubMed  Google Scholar 

  4. 4.

    Milosevic Feenstra JD, Nivarthi H, Gisslinger H, Leroy E, Rumi E, Chachoua I, et al. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms. Blood. 2016;127:325–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3:e270.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379–90.

    CAS  PubMed  Google Scholar 

  7. 7.

    Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369:2391–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Cabagnols X, Defour JP, Ugo V, Ianotto JC, Mossuz P, Mondet J, et al. Differential association of calreticulin type 1 and type 2 mutations with myelofibrosis and essential thrombocytemia: relevance for disease evolution. Leukemia. 2015;29:249–52.

    CAS  PubMed  Google Scholar 

  9. 9.

    Tefferi A, Wassie EA, Guglielmelli P, Gangat N, Belachew AA, Lasho TL, et al. Type 1 versus Type 2 calreticulin mutations in essential thrombocythemia: a collaborative study of 1027 patients. Am J Hematol. 2014;89:E121–4.

    CAS  PubMed  Google Scholar 

  10. 10.

    Eder-Azanza L, Navarro D, Aranaz P, Novo FJ, Cross NC, Vizmanos JL. Bioinformatic analyses of CALR mutations in myeloproliferative neoplasms support a role in signaling. Leukemia. 2014;28:2106–9.

    CAS  PubMed  Google Scholar 

  11. 11.

    Pietra D, Rumi E, Ferretti VV, Di Buduo CA, Milanesi C, Cavalloni C, et al. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia. 2016;30:431–8.

    CAS  PubMed  Google Scholar 

  12. 12.

    Araki M, Yang Y, Masubuchi N, Hironaka Y, Takei H, Morishita S, et al. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood. 2016;127:1307–16.

    CAS  PubMed  Google Scholar 

  13. 13.

    Chachoua I, Pecquet C, El-Khoury M, Nivarthi H, Albu RI, Marty C, et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood. 2016;127:1325–35.

    CAS  PubMed  Google Scholar 

  14. 14.

    Elf S, Abdelfattah NS, Chen E, Perales-Paton J, Rosen EA, Ko A, et al. Mutant calreticulin requires both its mutant C-terminus and the thrombopoietin receptor for oncogenic transformation. Cancer Discov. 2016;6:368–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Marty C, Pecquet C, Nivarthi H, El-Khoury M, Chachoua I, Tulliez M, et al. Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis. Blood. 2016;127:1317–24.

    CAS  PubMed  Google Scholar 

  16. 16.

    Balligand T, Achouri Y, Pecquet P, Gaudray G, Colau D, Hug E, et al. Knock-in of Murine Calr del52 induces essential thrombocythemia with slow-rising dominance in mice and reveals key role of Calr Exon9 in Cardiac Development. Leukemia. 2020;34:510–21.

    CAS  PubMed  Google Scholar 

  17. 17.

    Li J, Prins D, Park HJ, Grinfeld J, Gonzalez-Arias C, Loughran S, et al. Mutant calreticulin knockin mice develop thrombocytosis and myelofibrosis without a stem cell self-renewal advantage. Blood. 2018;131:649–61.

    CAS  PubMed  Google Scholar 

  18. 18.

    Shide K, Kameda T, Yamaji T, Sekine M, Inada N, Kamiunten A, et al. Calreticulin mutant mice develop essential thrombocythemia that is ameliorated by the JAK inhibitor ruxolitinib. Leukemia. 2017;31:1136–44.

    CAS  PubMed  Google Scholar 

  19. 19.

    Andrikovics H, Krahling T, Balassa K, Halm G, Bors A, Koszarska M, et al. Distinct clinical characteristics of myeloproliferative neoplasms with calreticulin mutations. Haematologica. 2014;99:1184–90.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Rotunno G, Mannarelli C, Guglielmelli P, Pacilli A, Pancrazzi A, Pieri L, et al. Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood. 2014;123:1552–5.

    CAS  PubMed  Google Scholar 

  21. 21.

    Rumi E, Pietra D, Ferretti V, Klampfl T, Harutyunyan AS, Milosevic JD, et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood. 2014;123:1544–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Tefferi A, Lasho TL, Finke C, Belachew AA, Wassie EA, Ketterling RP, et al. Type 1 vs type 2 calreticulin mutations in primary myelofibrosis: differences in phenotype and prognostic impact. Leukemia. 2014;28:1568–70.

    CAS  PubMed  Google Scholar 

  23. 23.

    Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    CAS  PubMed  Google Scholar 

  24. 24.

    Tefferi A, Thiele J, Vannucchi AM, Barbui T. An overview on CALR and CSF3R mutations and a proposal for revision of WHO diagnostic criteria for myeloproliferative neoplasms. Leukemia. 2014;28:1407–13.

    CAS  PubMed  Google Scholar 

  25. 25.

    Allen C, Lambert JR, Linch DC, Gale RE. X chromosome inactivation analysis reveals a difference in the biology of ET patients with JAK2 and CALR mutations. Blood. 2014;124:2091–3.

    CAS  PubMed  Google Scholar 

  26. 26.

    Dupont S, Masse A, James C, Teyssandier I, Lecluse Y, Larbret F, et al. The JAK2 617V>F mutation triggers erythropoietin hypersensitivity and terminal erythroid amplification in primary cells from patients with polycythemia vera. Blood. 2007;110:1013–21.

    CAS  PubMed  Google Scholar 

  27. 27.

    Scott LM, Scott MA, Campbell PJ, Green AR. Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood. 2006;108:2435–7.

    CAS  PubMed  Google Scholar 

  28. 28.

    Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA. New mutations and pathogenesis of myeloproliferative neoplasms. Blood. 2011;118:1723–35.

    CAS  PubMed  Google Scholar 

  29. 29.

    Kjaer L, Holmstrom MO, Cordua S, Andersen MH, Svane IM, Thomassen M, et al. Sorted peripheral blood cells identify CALR mutations in B- and T-lymphocytes. Leuk Lymphoma. 2018;59:973–7.

    CAS  PubMed  Google Scholar 

  30. 30.

    Delhommeau F, Dupont S, Tonetti C, Masse A, Godin I, Le Couedic JP, et al. Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood. 2007;109:71–7.

    CAS  PubMed  Google Scholar 

  31. 31.

    Nam AS, Kim KT, Chaligne R, Izzo F, Ang C, Taylor J, et al. Somatic mutations and cell identity linked by Genotyping of Transcriptomes. Nature. 2019;571:355–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Rodriguez-Meira A, Buck G, Clark SA, Povinelli BJ, Alcolea V, Louka E, et al. Unravelling intratumoral heterogeneity through high-sensitivity single-cell mutational analysis and parallel RNA sequencing. Mol Cell. 2019;73:1292–305. e8.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Anand S, Stedham F, Beer P, Gudgin E, Ortmann CA, Bench A, et al. Effects of the JAK2 mutation on the hematopoietic stem and progenitor compartment in human myeloproliferative neoplasms. Blood. 2011;118:177–81.

    CAS  PubMed  Google Scholar 

  34. 34.

    James C, Mazurier F, Dupont S, Chaligne R, Lamrissi-Garcia I, Tulliez M, et al. The hematopoietic stem cell compartment of JAK2V617F-positive myeloproliferative disorders is a reflection of disease heterogeneity. Blood. 2008;112:2429–38.

    CAS  PubMed  Google Scholar 

  35. 35.

    Kent DG, Li J, Tanna H, Fink J, Kirschner K, Pask DC, et al. Self-renewal of single mouse hematopoietic stem cells is reduced by JAK2V617F without compromising progenitor cell expansion. PLoS Biol. 2013;11:e1001576.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Saint-Martin C, Leroy G, Delhommeau F, Panelatti G, Dupont S, James C, et al. Analysis of the ten-eleven translocation 2 (TET2) gene in familial myeloproliferative neoplasms. Blood. 2009;114:1628–32.

    CAS  PubMed  Google Scholar 

  37. 37.

    Ortmann CA, Kent DG, Nangalia J, Silber Y, Wedge DC, Grinfeld J, et al. Effect of mutation order on myeloproliferative neoplasms. N Engl J Med. 2015;372:601–12.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A, et al. Mutation in TET2 in myeloid cancers. N. Engl J Med. 2009;360:2289–301.

    PubMed  Google Scholar 

  39. 39.

    Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123:2220–8.

    CAS  PubMed  Google Scholar 

  40. 40.

    Passamonti F, Rumi E, Pietra D, Elena C, Boveri E, Arcaini L, et al. A prospective study of 338 patients with polycythemia vera: the impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia. 2010;24:1574–9.

    CAS  PubMed  Google Scholar 

  41. 41.

    Rumi E, Pietra D, Guglielmelli P, Bordoni R, Casetti I, Milanesi C, et al. Acquired copy-neutral loss of heterozygosity of chromosome 1p as a molecular event associated with marrow fibrosis in MPL-mutated myeloproliferative neoplasms. Blood. 2013;121:4388–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Barosi G, Rosti V, Bonetti E, Campanelli R, Carolei A, Catarsi P, et al. Evidence that prefibrotic myelofibrosis is aligned along a clinical and biological continuum featuring primary myelofibrosis. PLoS ONE. 2012;7:e35631.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Campbell PJ, Scott LM, Buck G, Wheatley K, East CL, Marsden JT, et al. Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet. 2005;366:1945–53.

    CAS  PubMed  Google Scholar 

  44. 44.

    Kollmann K, Warsch W, Gonzalez-Arias C, Nice FL, Avezov E, Milburn J, et al. A novel signalling screen demonstrates that CALR mutations activate essential MAPK signalling and facilitate megakaryocyte differentiation. Leukemia. 2017;31:934–44.

    CAS  PubMed  Google Scholar 

  45. 45.

    Chagraoui H, Komura E, Tulliez M, Giraudier S, Vainchenker W, Wendling F. Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice. Blood. 2002;100:3495–503.

    CAS  PubMed  Google Scholar 

  46. 46.

    Lau WW, Hannah R, Green AR, Gottgens B. The JAK-STAT signaling pathway is differentially activated in CALR-positive compared with JAK2V617F-positive ET patients. Blood. 2015;125:1679–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Di Buduo CA, Abbonante V, Marty C, Moccia F, Rumi E, Pietra D, et al. Defective interaction of mutant calreticulin and SOCE in megakaryocytes from patients with myeloproliferative neoplasms. Blood. 2020;135:133–44.

    PubMed  Google Scholar 

  48. 48.

    Elf S, Abdelfattah NS, Baral AJ, Beeson D, Rivera JF, Ko A, et al. Defining the requirements for the pathogenic interaction between mutant calreticulin and MPL in MPN. Blood. 2018;131:782–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Pronier E, Cifani P, Merlinsky TR, Berman KB, Somasundara AVH, Rampal RK, et al. Targeting the CALR interactome in myeloproliferative neoplasms. JCI Insight. 2018;3:e122703.

    PubMed Central  Google Scholar 

  50. 50.

    Mondet J, Park JH, Menard A, Marzac C, Carillo S, Pourcelot E, et al. Endogenous megakaryocytic colonies underline association between megakaryocytes and calreticulin mutations in essential thrombocythemia. Haematologica. 2015;100:e176–8.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Gekas C, Graf T. CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood. 2013;121:4463–72.

    CAS  PubMed  Google Scholar 

  52. 52.

    Sanjuan-Pla A, Macaulay IC, Jensen CT, Woll PS, Luis TC, Mead A, et al. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature. 2013;502:232–6.

    CAS  PubMed  Google Scholar 

  53. 53.

    Kjaer L, Cordua S, Holmstrom MO, Thomassen M, Kruse TA, Pallisgaard N, et al. Differential dynamics of CALR mutant Allele burden in myeloproliferative neoplasms during Interferon Alfa Treatment. PLoS ONE. 2016;11:e0165336.

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Debili N, Coulombel L, Croisille L, Katz A, Guichard J, Breton-Gorius J, et al. Characterization of a bipotent erythro-megakaryocytic progenitor in human bone marrow. Blood. 1996;88:1284–96.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the Agence Nationale pour la Recherche (Thrombocytosis, WV), the Ligue Nationale contre le Cancer (équipe labellelisée HR 2016, 2019), the Fondation Laurette Fugain (WV, IP), INCA PLBIO 2016 (IP), by grant “ Taxe d’apprentissage” Gustave Roussy—2016 (LS and MEK) and from the INSERM. Labex GR-Ex (IP, WV) is funded by the program “Investissements d’avenir.” Support to SNC was from Fondation contre le cancer, Salus Sanguinis Action de recherché concertée (ARC) 16/21-073 and WelBio F 44/8/5—MCF/UIG—10955. MEK was supported by the SFH (Société française d’hématologie), XC and AT were supported by the university Paris-Diderot (MENRT grant), MM by la Ligue Nationale contre le Cancer, Gustave Roussy Foundation and SFH. GRM was a recipient from allocations doctorales sur domaines cibles (ARDoc, Ile-de-France region). GV was supported by a PhD aspirant fellowship of the Fonds Nationals de la Recherche Scientifique, Belgium. We want to thank the platforms of bioinformatic (Khadija M Diop, Guillaume Meurice and Marc Deloger) and flow cytometry and Edwige Leclercq, Marie-Hélène Courtier for CALR sizing analysis.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to William Vainchenker or Isabelle Plo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Khoury, M., Cabagnols, X., Mosca, M. et al. Different impact of calreticulin mutations on human hematopoiesis in myeloproliferative neoplasms. Oncogene 39, 5323–5337 (2020). https://doi.org/10.1038/s41388-020-1368-3

Download citation

Further reading

Search

Quick links