Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mdm2-mediated neddylation of pVHL blocks the induction of antiangiogenic factors

Abstract

Mutations in the tumor suppressor TP53 are rare in renal cell carcinomas. p53 is a key factor for inducing antiangiogenic genes and RCC are highly vascularized, which suggests that p53 is inactive in these tumors. One regulator of p53 is the Mdm2 oncogene, which is correlated with high-grade, metastatic tumors. However, the sole activity of Mdm2 is not just to regulate p53, but it can also function independent of p53 to regulate the early stages of metastasis. Here, we report that the oncoprotein Mdm2 can bind directly to the tumor suppressor VHL, and conjugate nedd8 to VHL within a region that is important for the p53–VHL interaction. Nedd8 conjugated VHL is unable to bind to p53 thereby preventing the induction of antiangiogenic factors. These results highlight a previously unknown oncogenic function of Mdm2 during the progression of cancer to promote angiogenesis through the regulation of VHL. Thus, the Mdm2–VHL interaction represents a pathway that impacts tumor angiogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: p53 target genes for apoptosis and angiogenesis are altered by VHL status.
Fig. 2: Mdm2 binds to VHL and inhibits VHL–p53 complex formation under hypoxia.
Fig. 3: Neddylation of VHL by Mdm2 interferes with VHL–p53 complex formation.
Fig. 4: VHL forms a complex with p53 under hypoxia or with treatment of MLN4924.
Fig. 5: VHL increases the activation of p53 under hypoxia leading to increased transcription and secretion of TSP-1.
Fig. 6: p53 and TSP-1 inhibit human umbilical vein endothelial cell network formation.

Similar content being viewed by others

References

  1. Rayburn E, Zhang R, He J, Wang H. MDM2 and human malignancies: expression, clinical pathology, prognostic markers, and implications for chemotherapy. Curr Cancer Drug Targets. 2005;5:27–41.

    Article  CAS  PubMed  Google Scholar 

  2. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–9.

    Article  CAS  PubMed  Google Scholar 

  3. Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature. 1997;387:299–303.

    Article  CAS  PubMed  Google Scholar 

  4. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995;80:293–9.

    Article  CAS  PubMed  Google Scholar 

  5. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–25.

    Article  CAS  PubMed  Google Scholar 

  6. Han J, Flemington C, Houghton AB, Gu Z, Zambetti GP, Lutz RJ, et al. Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc Natl Acad Sci USA. 2001;98:11318–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Joerger AC, Fersht AR. The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem. 2016;85:375–404.

    Article  CAS  PubMed  Google Scholar 

  8. Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science. 1994;265:1582–4.

    Article  CAS  PubMed  Google Scholar 

  9. Kamat CD, Green DE, Warnke L, Thorpe JE, Ceriello A, Ihnat MA. Mutant p53 facilitates pro-angiogenic, hyperproliferative phenotype in response to chronic relative hypoxia. Cancer Lett. 2007;249:209–19.

    Article  CAS  PubMed  Google Scholar 

  10. Zou Z, Gao C, Nagaich AK, Connell T, Saito S, Moul JW, et al. p53 regulates the expression of the tumor suppressor gene maspin. J Biol Chem. 2000;275:6051–4.

    Article  CAS  PubMed  Google Scholar 

  11. Miled C, Pontoglio M, Garbay S, Yaniv M, Weitzman JB. A genomic map of p53 binding sites identifies novel p53 targets involved in an apoptotic network. Cancer Res. 2005;65:5096–104.

    Article  CAS  PubMed  Google Scholar 

  12. Mukhopadhyay D, Tsiokas L, Sukhatme VP. Wild-type p53 and v-Src exert opposing influences on human vascular endothelial growth factor gene expression. Cancer Res. 1995;55:6161–5.

    CAS  PubMed  Google Scholar 

  13. Joshi S, Singh AR, Durden DL. MDM2 regulates hypoxic hypoxia-inducible factor 1alpha stability in an E3 ligase, proteasome, and PTEN-phosphatidylinositol 3-kinase-AKT-dependent manner. J Biol Chem. 2014;289:22785–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nieminen AL, Qanungo S, Schneider EA, Jiang BH, Agani FH. Mdm2 and HIF-1alpha interaction in tumor cells during hypoxia. J Cell Physiol. 2005;204:364–9.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou S, Gu L, He J, Zhang H, Zhou M. MDM2 regulates vascular endothelial growth factor mRNA stabilization in hypoxia. Mol Cell Biol. 2011;31:4928–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Batuello CN, Hauck PM, Gendron JM, Lehman JA, Mayo LD. Src phosphorylation converts Mdm2 from a ubiquitinating to a neddylating E3 ligase. Proc Natl Acad Sci USA. 2015;112:1749–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roe JS, Kim H, Lee SM, Kim ST, Cho EJ, Youn HD. p53 stabilization and transactivation by a von Hippel-Lindau protein. Mol Cell. 2006;22:395–405.

    Article  CAS  PubMed  Google Scholar 

  18. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292:464–8.

    Article  CAS  PubMed  Google Scholar 

  19. Kim WY, Kaelin WG. Role of VHL gene mutation in human cancer. J Clin Oncol. 2004;22:4991–5004.

    Article  CAS  PubMed  Google Scholar 

  20. Gurova KV, Hill JE, Razorenova OV, Chumakov PM, Gudkov AV. p53 pathway in renal cell carcinoma is repressed by a dominant mechanism. Cancer Res. 2004;64:1951–8.

    Article  CAS  PubMed  Google Scholar 

  21. Russell RC, Ohh M. NEDD8 acts as a ‘molecular switch’ defining the functional selectivity of VHL. EMBO Rep. 2008;9:486–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stickle NH, Chung J, Klco JM, Hill RP, Kaelin WG Jr., Ohh M. pVHL modification by NEDD8 is required for fibronectin matrix assembly and suppression of tumor development. Mol Cell Biol. 2004;24:3251–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nishimori H, Shiratsuchi T, Urano T, Kimura Y, Kiyono K, Tatsumi K, et al. A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene. 1997;15:2145–50.

    Article  CAS  PubMed  Google Scholar 

  24. Wolf ER, McAtarsney CP, Bredhold KE, Kline AM, Mayo LD. Mutant and wild-type p53 form complexes with p73 upon phosphorylation by the kinase JNK. Sci Signal. 2018;11:1–8.

  25. Somasundaram K, MacLachlan TK, Burns TF, Sgagias M, Cowan KH, Weber BL, et al. BRCA1 signals ARF-dependent stabilization and coactivation of p53. Oncogene. 1999;18:6605–14.

    Article  CAS  PubMed  Google Scholar 

  26. Zbar B, Kishida T, Chen F, Schmidt L, Maher ER, Richards FM, et al. Germline mutations in the Von Hippel-Lindau disease (VHL) gene in families from North America, Europe, and Japan. Hum Mutat. 1996;8:348–57.

    Article  CAS  PubMed  Google Scholar 

  27. Hauck PM, Wolf ER, Olivos DJ 3rd, McAtarsney CP, Mayo LD. The fate of murine double minute X (MdmX) is dictated by distinct signaling pathways through murine double minute 2 (Mdm2). Oncotarget. 2017;8:104455–66.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mukhopadhyay D, Tsiokas L, Zhou XM, Foster D, Brugge JS, Sukhatme VP. Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature. 1995;375:577–81.

    Article  CAS  PubMed  Google Scholar 

  29. Reed SM, Quelle DE. p53 acetylation: regulation and consequences. Cancers (Basel). 2014;7:30–69.

    Article  CAS  Google Scholar 

  30. Jin Y, Zhang P, Wang Y, Jin B, Zhou J, Zhang J, et al. Neddylation blockade diminishes hepatic metastasis by dampening cancer stem-like cells and angiogenesis in uveal melanoma. Clin Cancer Res. 2018;24:3741–54.

    Article  CAS  PubMed  Google Scholar 

  31. Yao WT, Wu JF, Yu GY, Wang R, Wang K, Li LH, et al. Suppression of tumor angiogenesis by targeting the protein neddylation pathway. Cell Death Dis. 2014;5:e1059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292:468–72.

    Article  CAS  PubMed  Google Scholar 

  33. Lonergan KM, Iliopoulos O, Ohh M, Kamura T, Conaway RC, Conaway JW, et al. Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol Cell Biol. 1998;18:732–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol. 2000;2:423–7.

    Article  CAS  PubMed  Google Scholar 

  35. Stebbins CE, Kaelin WG Jr., Pavletich NP. Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science. 1999;284:455–61.

    Article  CAS  PubMed  Google Scholar 

  36. Venkatesan T, Alaseem A, Chinnaiyan A, Dhandayuthapani S, Kanagasabai T, Alhazzani K, et al. MDM2 overexpression modulates the angiogenesis-related gene expression profile of prostate cancer cells. Cells. 2018;7:3–15.

  37. Xiong J, Yang Q, Li J, Zhou S. Effects of MDM2 inhibitors on vascular endothelial growth factor-mediated tumor angiogenesis in human breast cancer. Angiogenesis. 2014;17:37–50.

    Article  CAS  PubMed  Google Scholar 

  38. Patterson DM, Gao D, Trahan DN, Johnson BA, Ludwig A, Barbieri E, et al. Effect of MDM2 and vascular endothelial growth factor inhibition on tumor angiogenesis and metastasis in neuroblastoma. Angiogenesis. 2011;14:255–66.

    Article  CAS  PubMed  Google Scholar 

  39. Ding X, Jia X, Wang C, Xu J, Gao SJ, Lu C. A DHX9-lncRNA-MDM2 interaction regulates cell invasion and angiogenesis of cervical cancer. Cell Death Differ. 2019;26:1750–65. https://doi.org/10.1038/s41418-018-0242-0.

  40. Hauck PM, Wolf ER, Olivos DJ 3rd, Batuello CN, McElyea KC, McAtarsney CP, et al. Early-stage metastasis requires Mdm2 and not p53 gain of function. Mol Cancer Res. 2017;15:1598–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell. 1999;4:915–24.

    Article  CAS  PubMed  Google Scholar 

  42. Bohlman S, Manfredi JJ. p53-independent effects of Mdm2. Subcell Biochem. 2014;85:235–46.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen D, Li M, Luo J, Gu W. Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function. J Biol Chem. 2003;278:13595–8.

    Article  CAS  PubMed  Google Scholar 

  44. Ganguli G, Wasylyk B. p53-independent functions of MDM2. Mol Cancer Res. 2003;1:1027–35.

    CAS  PubMed  Google Scholar 

  45. Zeng X, Chen L, Jost CA, Maya R, Keller D, Wang X, et al. MDM2 suppresses p73 function without promoting p73 degradation. Mol Cell Biol. 1999;19:3257–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang XQ, Ongkeko WM, Lau AW, Leung KM, Poon RY. A possible role of p73 on the modulation of p53 level through MDM2. Cancer Res. 2001;61:1598–603.

    CAS  PubMed  Google Scholar 

  47. Kadakia M, Slader C, Berberich SJ. Regulation of p63 function by Mdm2 and MdmX. DNA Cell Biol. 2001;20:321–30.

    Article  CAS  PubMed  Google Scholar 

  48. An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM. Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature. 1998;392:405–8.

    Article  CAS  PubMed  Google Scholar 

  49. Graeber TG, Peterson JF, Tsai M, Monica K, Fornace AJ Jr., Giaccia AJ. Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol Cell Biol. 1994;14:6264–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hammond EM, Denko NC, Dorie MJ, Abraham RT, Giaccia AJ. Hypoxia links ATR and p53 through replication arrest. Mol Cell Biol. 2002;22:1834–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hansson LO, Friedler A, Freund S, Rudiger S, Fersht AR. Two sequence motifs from HIF-1alpha bind to the DNA-binding site of p53. Proc Natl Acad Sci USA. 2002;99:10305–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mizuno S, Bogaard HJ, Kraskauskas D, Alhussaini A, Gomez-Arroyo J, Voelkel NF, et al. p53 Gene deficiency promotes hypoxia-induced pulmonary hypertension and vascular remodeling in mice. Am J Physiol Lung Cell Mol Physiol. 2011;300:L753–61.

    Article  CAS  PubMed  Google Scholar 

  53. Pan Y, Oprysko PR, Asham AM, Koch CJ, Simon MC. p53 cannot be induced by hypoxia alone but responds to the hypoxic microenvironment. Oncogene. 2004;23:4975–83.

    Article  CAS  PubMed  Google Scholar 

  54. Sanchez-Puig N, Veprintsev DB, Fersht AR. Binding of natively unfolded HIF-1alpha ODD domain to p53. Mol Cell. 2005;17:11–21.

    Article  CAS  PubMed  Google Scholar 

  55. Kaelin WG. Von Hippel-Lindau disease. Annu Rev Pathol. 2007;2:145–73.

    Article  CAS  PubMed  Google Scholar 

  56. Noon AP, Vlatkovic N, Polanski R, Maguire M, Shawki H, Parsons K, et al. p53 and MDM2 in renal cell carcinoma: biomarkers for disease progression and future therapeutic targets? Cancer. 2010;116:780–90.

    Article  CAS  PubMed  Google Scholar 

  57. Haitel A, Wiener HG, Baethge U, Marberger M, Susani M. mdm2 expression as a prognostic indicator in clear cell renal cell carcinoma: comparison with p53 overexpression and clinicopathological parameters. Clin Cancer Res. 2000;6:1840–4.

    CAS  PubMed  Google Scholar 

  58. Li AG, Piluso LG, Cai X, Wei G, Sellers WR, Liu X. Mechanistic insights into maintenance of high p53 acetylation by PTEN. Mol Cell. 2006;23:575–87.

    Article  PubMed  CAS  Google Scholar 

  59. Wu X, Bayle JH, Olson D, Levine AJ. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 1993;7:1126–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by NIH/NCI CA172256 and the Riley Children’s Foundation. We thank Dr. Ohh for the VHL expression plasmid, Dr. Bouck for the Thrombospondin reporter plasmid, and Dr. Ivan for the renal cell carcinoma cell lines to aid in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsey D. Mayo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, E.R., Mabry, A.R., Damania, B. et al. Mdm2-mediated neddylation of pVHL blocks the induction of antiangiogenic factors. Oncogene 39, 5228–5239 (2020). https://doi.org/10.1038/s41388-020-1359-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1359-4

This article is cited by

Search

Quick links