Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PPARδ is a regulator of autophagy by its phosphorylation

Abstract

In response to nutrient deficiency, autophagy degrades cytoplasmic materials and organelles in lysosomes, which is nutrient recycling, whereas activation of EGFR mediates autophagy suppression in response to growth factors. It is unclear whether PPARδ could be the regulator of autophagy in response to active EGFR. Here we found that EGFR induced PPARδ phosphorylation at tyrosine-108 leading to increased binding of LC3 to PPARδ by its LIR (LC3 interacting region) motif, consequently, inhibited autophagic flux. Conversely, EGFR inhibitor treatment reversed this event. Furthermore, EGFR-mediated PPARδ phosphorylation at tyrosine-108 led to autophagy inhibition and tumor growth. These findings suggest that PPARδ serves as a regulator of autophagy by its phosphorylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EGFR induces PPARδ phosphorylation.
Fig. 2: PPARδ-Y108 phosphorylation inhibits autophagy.
Fig. 3: PPARδ-Y108 phosphorylation enhances the binding of PPARδ to LC3.
Fig. 4: The LIR motif of PPARδ is required for LC3 binding.
Fig. 5: PPARδ-Y108 phosphorylation promotes tumor growth.
Fig. 6: The model of PPARδ phosphorylation regulates autophagy.

Similar content being viewed by others

References

  1. Chang SH, Huang SW, Wang ST, Chung KC, Hsieh CW, Kao JK, et al. Imiquimod-induced autophagy is regulated by ER stress-mediated PKR activation in cancer cells. J Dermatol Sci. 2017;87:138–48.

    Article  CAS  PubMed  Google Scholar 

  2. Kaur J, Debnath J. Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol. 2015;16:461–72.

    Article  CAS  PubMed  Google Scholar 

  3. Mizushima N, Klionsky DJ. Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr. 2007;27:19–40.

    Article  CAS  PubMed  Google Scholar 

  4. Hotchkiss RS, Strasser A, McDunn JE, Swanson PE. Cell death. N. Engl J Med. 2009;361:1570–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kroemer G, Jaattela M. Lysosomes and autophagy in cell death control. Nat Rev Cancer. 2005;5:886–97.

    Article  CAS  PubMed  Google Scholar 

  6. Burton LJ, Rivera M, Hawsawi O, Zou J, Hudson T, Wang G, et al. Muscadine grape skin extract induces an unfolded protein response-mediated autophagy in prostate cancer cells: a TMT-based quantitative proteomic analysis. PLoS ONE. 2016;11:e0164115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Chang CT, Hseu YC, Thiyagarajan V, Lin KY, Way TD, Korivi M, et al. Chalcone flavokawain B induces autophagic-cell death via reactive oxygen species-mediated signaling pathways in human gastric carcinoma and suppresses tumor growth in nude mice. Arch Toxicol. 2017;91:3341–64.

    Article  CAS  PubMed  Google Scholar 

  8. Chang CH, Lee CY, Lu CC, Tsai FJ, Hsu YM, Tsao JW, et al. Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: A key role of AMPK and Akt/mTOR signaling. Int J Oncol. 2017;50:873–82.

    Article  CAS  PubMed  Google Scholar 

  9. Ba MC, Long H, Cui SZ, Gong YF, Yan ZF, Wang S, et al. Mild hyperthermia enhances sensitivity of gastric cancer cells to chemotherapy through reactive oxygen species-induced autophagic death. Tumour Biol. 2017;39:1010428317711952.

    Article  PubMed  CAS  Google Scholar 

  10. Rodolfo C, Rocco M, Cattaneo L, Tartaglia M, Sassi M, Aducci P, et al. Ophiobolin A induces autophagy and activates the mitochondrial pathway of apoptosis in human melanoma cells. PLoS ONE. 2016;11:e0167672.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Nazim UM, Moon JH, Lee YJ, Seol JW, Park SY. PPARgamma activation by troglitazone enhances human lung cancer cells to TRAIL-induced apoptosis via autophagy flux. Oncotarget. 2017;8:26819–31.

    Article  PubMed  PubMed Central  Google Scholar 

  12. You M, Jin J, Liu Q, Xu Q, Shi J, Hou Y. PPARalpha promotes cancer cell Glut1 transcription repression. J Cell Biochem. 2017;118:1556–62.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang W, Xu Y, Xu Q, Shi H, Shi J, Hou Y. PPARdelta promotes tumor progression via activation of Glut1 and SLC1-A5 transcription. Carcinogenesis. 2017;38:748–55.

    Article  CAS  PubMed  Google Scholar 

  14. Khozoie C, Borland MG, Zhu B, Baek S, John S, Hager GL, et al. Analysis of the peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) cistrome reveals novel co-regulatory role of ATF4. BMC Genomics. 2012;13:665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Venkatachalam G, Kumar AP, Yue LS, Pervaiz S, Clement MV, Sakharkar MK. Computational identification and experimental validation of PPRE motifs in NHE1 and MnSOD genes of human. BMC Genomics. 2009;10(Suppl 3):S5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Michalik L, Desvergne B, Wahli W. Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat Rev Cancer. 2004;4:61–70.

    Article  CAS  PubMed  Google Scholar 

  17. Hou Y, Moreau F, Chadee K. PPARgamma is an E3 ligase that induces the degradation of NFkappaB/p65. Nat Commun. 2012;3:1300.

    Article  PubMed  CAS  Google Scholar 

  18. Hou Y, Gao J, Xu H, Xu Y, Zhang Z, Xu Q, et al. PPARgamma E3 ubiquitin ligase regulates MUC1-C oncoprotein stability. Oncogene. 2014;33:5619–25.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Z, Xu Y, Xu Q, Hou Y. PPARgamma against tumors by different signaling pathways. Onkologie. 2013;36:598–601.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou D, Jin J, Liu Q, Shi J, Hou Y. PPARdelta agonist enhances colitis-associated colorectal cancer. Eur J Pharm. 2019;842:248–54.

    Article  CAS  Google Scholar 

  21. You M, Gao J, Jin J, Hou Y. PPARalpha enhances cancer cell chemotherapy sensitivity by autophagy induction. J Oncol. 2018;2018:6458537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wei Y, Zou Z, Becker N, Anderson M, Sumpter R, Xiao G, et al. EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell. 2013;154:1269–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li X, Lu Y, Pan T, Fan Z. Roles of autophagy in cetuximab-mediated cancer therapy against EGFR. Autophagy. 2010;6:1066–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fung C, Chen X, Grandis JR, Duvvuri U. EGFR tyrosine kinase inhibition induces autophagy in cancer cells. Cancer Biol Ther. 2012;13:1417–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu JJ, Zhou DD, Cui B, Zhang C, Tan FW, Chang S, et al. Disruption of the EGFR-SQSTM1 interaction by a stapled peptide suppresses lung cancer via activating autophagy and inhibiting EGFR signaling. Cancer Lett. 2020;474:23–35.

    Article  CAS  PubMed  Google Scholar 

  26. Han W, Pan H, Chen Y, Sun J, Wang Y, Li J, et al. EGFR tyrosine kinase inhibitors activate autophagy as a cytoprotective response in human lung cancer cells. PLoS ONE. 2011;6:e18691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Birgisdottir AB, Lamark T, Johansen T. The LIR motif—crucial for selective autophagy. J Cell Sci. 2013;126:3237–47.

    CAS  PubMed  Google Scholar 

  28. Abu El Maaty MA, Strassburger W, Qaiser T, Dabiri Y, Wolfl S. Differences in p53 status significantly influence the cellular response and cell survival to 1,25-dihydroxyvitamin D3-metformin cotreatment in colorectal cancer cells. Mol Carcinog. 2017;56:2486–98.

    Article  CAS  PubMed  Google Scholar 

  29. Rautou PE, Mansouri A, Lebrec D, Durand F, Valla D, Moreau R. Autophagy in liver diseases. J Hepatol. 2010;53:1123–34.

    Article  CAS  PubMed  Google Scholar 

  30. Peng Y, Cao J, Yao XY, Wang JX, Zhong MZ, Gan PP, et al. TUSC3 induces autophagy in human non-small cell lung cancer cells through Wnt/beta-catenin signaling. Oncotarget. 2017;8:52960–74.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kang MR, Kim MS, Oh JE, Kim YR, Song SY, Kim SS, et al. Frameshift mutations of autophagy-related genes ATG2B, ATG5, ATG9B and ATG12 in gastric and colorectal cancers with microsatellite instability. J Pathol. 2009;217:702–6.

    Article  CAS  PubMed  Google Scholar 

  32. Balakumaran BS, Porrello A, Hsu DS, Glover W, Foye A, Leung JY, et al. MYC activity mitigates response to rapamycin in prostate cancer through eukaryotic initiation factor 4E-binding protein 1-mediated inhibition of autophagy. Cancer Res. 2009;69:7803–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Capizzi M, Strappazzon F, Cianfanelli V, Papaleo E, Cecconi F. MIR7-3HG, a MYC-dependent modulator of cell proliferation, inhibits autophagy by a regulatory loop involving AMBRA1. Autophagy. 2017;13:554–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chung SJ, Nagaraju GP, Nagalingam A, Muniraj N, Kuppusamy P, Walker A, et al. ADIPOQ/adiponectin induces cytotoxic autophagy in breast cancer cells through STK11/LKB1-mediated activation of the AMPK-ULK1 axis. Autophagy. 2017;13:1386–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lian J, Karnak D, Xu L. The Bcl-2-Beclin 1 interaction in (-)-gossypol-induced autophagy versus apoptosis in prostate cancer cells. Autophagy. 2010;6:1201–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bhatelia K, Singh K, Prajapati P, Sripada L, Roy M, Singh R. MITA modulated autophagy flux promotes cell death in breast cancer cells. Cell Signal. 2017;35:73–83.

    Article  CAS  PubMed  Google Scholar 

  37. Park MA, Yacoub A, Sarkar D, Emdad L, Rahmani M, Spiegel S, et al. PERK-dependent regulation of MDA-7/IL-24-induced autophagy in primary human glioma cells. Autophagy. 2008;4:513–5.

    Article  CAS  PubMed  Google Scholar 

  38. Oh S, Xiaofei E, Ni D, Pirooz SD, Lee JY, Lee D, et al. Downregulation of autophagy by Bcl-2 promotes MCF7 breast cancer cell growth independent of its inhibition of apoptosis. Cell Death Differ. 2011;18:452–64.

    Article  CAS  PubMed  Google Scholar 

  39. Gou Q, Gong X, Jin J, Shi J, Hou Y. Peroxisome proliferator-activated receptors (PPARs) are potential drug targets for cancer therapy. Oncotarget. 2017;8:60704–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yuan S, Jin J, Chen L, Hou Y, Wang H. Naoxintong/PPARgamma signaling inhibits cardiac hypertrophy via activation of autophagy. Evid Based Complement Altern Med. 2017;2017:3801976.

    Google Scholar 

  41. Gao J, Liu Q, Xu Y, Gong X, Zhang R, Zhou C, et al. PPARalpha induces cell apoptosis by destructing Bcl2. Oncotarget. 2015;6:44635–42.

    Article  PubMed  PubMed Central  Google Scholar 

  42. He TC, Chan TA, Vogelstein B, Kinzler KW. PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell. 1999;99:335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Peters JM, Morales JL, Gonzalez FJ. Modulation of gastrointestinal inflammation and colorectal tumorigenesis by peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta). Drug Discov Today Dis Mechanisms. 2011;8:e85–e93.

    Article  CAS  Google Scholar 

  44. You M, Yuan S, Shi J, Hou Y. PPARdelta signaling regulates colorectal cancer. Curr Pharm Des. 2015;21:2956–9.

    Article  CAS  PubMed  Google Scholar 

  45. Zuo X, Xu M, Yu J, Wu Y, Moussalli MJ, Manyam GC, et al. Potentiation of colon cancer susceptibility in mice by colonic epithelial PPAR-delta/beta overexpression. J Natl Cancer Inst. 2014;106:dju052.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Wang D, Fu L, Ning W, Guo L, Sun X, Dey SK, et al. Peroxisome proliferator-activated receptor delta promotes colonic inflammation and tumor growth. Proc Natl Acad Sci USA. 2014;111:7084–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hollingshead HE, Borland MG, Billin AN, Willson TM, Gonzalez FJ, Peters JM. Ligand activation of peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) and inhibition of cyclooxygenase 2 (COX2) attenuate colon carcinogenesis through independent signaling mechanisms. Carcinogenesis. 2008;29:169–76.

    Article  CAS  PubMed  Google Scholar 

  48. Marin HE, Peraza MA, Billin AN, Willson TM, Ward JM, Kennett MJ, et al. Ligand activation of peroxisome proliferator-activated receptor beta inhibits colon carcinogenesis. Cancer Res. 2006;66:4394–401.

    Article  CAS  PubMed  Google Scholar 

  49. Zhu B, Ferry CH, Blazanin N, Bility MT, Khozoie C, Kang BH, et al. PPARbeta/delta promotes HRAS-induced senescence and tumor suppression by potentiating p-ERK and repressing p-AKT signaling. Oncogene. 2014;33:5348–59.

    Article  CAS  PubMed  Google Scholar 

  50. Foreman JE, Chang WC, Palkar PS, Zhu B, Borland MG, Williams JL, et al. Functional characterization of peroxisome proliferator-activated receptor-beta/delta expression in colon cancer. Mol Carcinog. 2011;50:884–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2:127–37.

    Article  CAS  PubMed  Google Scholar 

  52. Marmor MD, Skaria KB, Yarden Y. Signal transduction and oncogenesis by ErbB/HER receptors. Int J Radiat Oncol, Biol, Phys. 2004;58:903–13.

    Article  CAS  Google Scholar 

  53. Han W, Lo HW. Landscape of EGFR signaling network in human cancers: biology and therapeutic response in relation to receptor subcellular locations. Cancer Lett. 2012;318:124–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Coelho MA, de Carne Trecesson S, Rana S, Zecchin D, Moore C, Molina-Arcas M, et al. Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity. 2017;47:1083–99 e1086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu Y, Jin J, Zhang W, Zhang Z, Gao J, Liu Q, et al. EGFR/MDM2 signaling promotes NF-kappaB activation via PPARgamma degradation. Carcinogenesis. 2016;37:215–22.

    Article  CAS  PubMed  Google Scholar 

  56. Lo HW, Hsu SC, Ali-Seyed M, Gunduz M, Xia W, Wei Y, et al. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell. 2005;7:575–89.

    Article  CAS  PubMed  Google Scholar 

  57. Hou Y, Gao F, Wang Q, Zhao J, Flagg T, Zhang Y, et al. Bcl2 impedes DNA mismatch repair by directly regulating the hMSH2-hMSH6 heterodimeric complex. J Biol Chem. 2007;282:9279–87.

    Article  CAS  PubMed  Google Scholar 

  58. Hou Y, Mortimer L, Chadee K. Entamoeba histolytica cysteine proteinase 5 binds integrin on colonic cells and stimulates NFkappaB-mediated pro-inflammatory responses. J Biol Chem. 2010;285:35497–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81672711, 81972618); Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_2218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhong Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplemental information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gou, Q., Jiang, Y., Zhang, R. et al. PPARδ is a regulator of autophagy by its phosphorylation. Oncogene 39, 4844–4853 (2020). https://doi.org/10.1038/s41388-020-1329-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1329-x

This article is cited by

Search

Quick links