Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A dual role of Irf1 in maintaining epithelial identity but also enabling EMT and metastasis formation of breast cancer cells

Abstract

An epithelial to mesenchymal transition (EMT) is an embryonic dedifferentiation program which is aberrantly activated in cancer cells to acquire cellular plasticity. This plasticity increases the ability of breast cancer cells to invade into surrounding tissue, to seed metastasis at distant sites and to resist to chemotherapy. In this study, we have observed a higher expression of interferon-related factors in basal-like and claudin-low subtypes of breast cancer in patients, known to be associated with EMT. Notably, Irf1 exerts essential functions during the EMT process, yet it is also required for the maintenance of an epithelial differentiation status of mammary gland epithelial cells: RNAi-mediated ablation of Irf1 in mammary epithelial cells results in the expression of mesenchymal factors and Smad transcriptional activity. Conversely, ablation of Irf1 during TGFβ-induced EMT prevents a mesenchymal transition and stabilizes the expression of E-cadherin. In the basal-like murine breast cancer cell line 4T1, RNAi-mediated ablation of Irf1 reduces colony formation and cell migration in vitro and shedding of circulating tumor cells and metastasis formation in vivo. This context-dependent dual role of Irf1 in the regulation of epithelial-mesenchymal plasticity provides important new insights into the functional contribution and therapeutic potential of interferon-regulated factors in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: mRNA expression of EMT (co)TF with unique expression profile in different breast cancer subtypes.
Fig. 2: Irf1 activity is essential for EMT progression.
Fig. 3: Irf1 knockdown induces Smad activity and dissolution of cell junctions in the absence of TGFβ, while inhibiting EMT in the presence of TGFβ.
Fig. 4: RNA-sequencing and ChIP-sequencing reveal differential regulation of EMT factors by Irf1 in the presence and absence of TGFβ.
Fig. 5: Irf1 knockdown reduces clonogenic growth, sphere formation and migration.
Fig. 6: Knockdown of Irf1 reduces the number of circulating tumor cells (CTC) and lung metastasis.

Similar content being viewed by others

Data availability

The RNA-sequencing and ChIP-sequencing data are deposited on GEO database under GSE141500 and GSE141501, respectively.

Supplementary information is available at www.nature.com/onc/.

References

  1. Nieto MA, Huang RY, Jackson RA, Thiery JP. Emt: 2016. Cell. 2016;166:21–45.

    Article  CAS  Google Scholar 

  2. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168:670–91.

    Article  CAS  Google Scholar 

  3. Huang RY, Wong MK, Tan TZ, Kuay KT, Ng AH, Chung VY, et al. An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530). Cell Death Dis. 2013;4:e915.

    Article  CAS  Google Scholar 

  4. Pastushenko I, Brisebarre A, Sifrim A, Fioramonti M, Revenco T, Boumahdi S, et al. Identification of the tumour transition states occurring during EMT. Nature. 2018;556:463–8.

    Article  CAS  Google Scholar 

  5. Stemmler MP, Eccles RL, Brabletz S, Brabletz T. Non-redundant functions of EMT transcription factors. Nat Cell Biol. 2019;21:102–12.

    Article  CAS  Google Scholar 

  6. Meyer-Schaller N, Cardner M, Diepenbruck M, Saxena M, Tiede S, Luond F, et al. A hierarchical regulatory landscape during the multiple stages of EMT. Dev Cell. 2019;48:539–53 e6.

    Article  CAS  Google Scholar 

  7. Yanai H, Negishi H, Taniguchi T. The IRF family of transcription factors: Inception, impact and implications in oncogenesis. Oncoimmunology. 2012;1:1376–86.

    Article  Google Scholar 

  8. Harada H, Kitagawa M, Tanaka N, Yamamoto H, Harada K, Ishihara M, et al. Anti-oncogenic and oncogenic potentials of interferon regulatory factors-1 and -2. Science. 1993;259:971–4.

    Article  CAS  Google Scholar 

  9. Bouker KB, Skaar TC, Riggins RB, Harburger DS, Fernandez DR, Zwart A, et al. Interferon regulatory factor-1 (IRF-1) exhibits tumor suppressor activities in breast cancer associated with caspase activation and induction of apoptosis. Carcinogenesis. 2005;26:1527–35.

    Article  CAS  Google Scholar 

  10. Alsamman K, El-Masry OS. Interferon regulatory factor 1 inactivation in human cancer. Biosci Rep. 2018;38:BSR20171672.

    Article  CAS  Google Scholar 

  11. Jiang L, Liu JY, Shi Y, Tang B, He T, Liu JJ, et al. MTMR2 promotes invasion and metastasis of gastric cancer via inactivating IFNgamma/STAT1 signaling. J Exp Clin Cancer Res. 2019;38:206.

    Article  Google Scholar 

  12. Bouker KB, Skaar TC, Fernandez DR, O’Brien KA, Riggins RB, Cao D, et al. interferon regulatory factor-1 mediates the proapoptotic but not cell cycle arrest effects of the steroidal antiestrogen ICI 182,780 (faslodex, fulvestrant). Cancer Res. 2004;64:4030–9.

    Article  CAS  Google Scholar 

  13. Pavan S, Olivero M, Cora D, Di Renzo MF. IRF-1 expression is induced by cisplatin in ovarian cancer cells and limits drug effectiveness. Eur J Cancer. 2013;49:964–73.

    Article  CAS  Google Scholar 

  14. Yu M, Xue H, Wang Y, Shen Q, Jiang Q, Zhang X, et al. miR-345 inhibits tumor metastasis and EMT by targeting IRF1-mediated mTOR/STAT3/AKT pathway in hepatocellular carcinoma. Int J Oncol. 2017;50:975–83.

    Article  CAS  Google Scholar 

  15. Maeda M, Johnson KR, Wheelock MJ. Cadherin switching: essential for behavioral but not morphological changes during an epithelium-to-mesenchyme transition. J Cell Sci. 2005;118(Pt 5):873–87.

    Article  CAS  Google Scholar 

  16. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.

    Article  CAS  Google Scholar 

  17. Dvinge H, Git A, Graf S, Salmon-Divon M, Curtis C, Sottoriva A, et al. The shaping and functional consequences of the microRNA landscape in breast cancer. Nature. 2013;497:378–82.

    Article  CAS  Google Scholar 

  18. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res: BCR. 2010;12:R68.

    Article  Google Scholar 

  19. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol: Off J Am Soc Clin Oncol. 2009;27:1160–7.

    Article  Google Scholar 

  20. Irudayam JI, Contreras D, Spurka L, Subramanian A, Allen J, Ren S, et al. Characterization of type I interferon pathway during hepatic differentiation of human pluripotent stem cells and hepatitis C virus infection. Stem Cell Res. 2015;15:354–64.

    Article  Google Scholar 

  21. Dror N, Alter-Koltunoff M, Azriel A, Amariglio N, Jacob-Hirsch J, Zeligson S, et al. Identification of IRF-8 and IRF-1 target genes in activated macrophages. Mol Immunol. 2007;44:338–46.

    Article  CAS  Google Scholar 

  22. You F, Wang P, Yang L, Yang G, Zhao YO, Qian F, et al. ELF4 is critical for induction of type I interferon and the host antiviral response. Nat Immunol. 2013;14:1237–46.

    Article  CAS  Google Scholar 

  23. Honda K, Takaoka A, Taniguchi T. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity. 2006;25:349–60.

    Article  CAS  Google Scholar 

  24. Guerrero MS, Parsons JT, Bouton AH. Cas and NEDD9 contribute to tumor progression through dynamic regulation of the cytoskeleton. Genes Cancer. 2012;3:371–81.

    Article  CAS  Google Scholar 

  25. Lotz-Jenne C, Luthi U, Ackerknecht S, Lehembre F, Fink T, Stritt M, et al. A high-content EMT screen identifies multiple receptor tyrosine kinase inhibitors with activity on TGFbeta receptor. Oncotarget. 2016;7:25983–6002.

    Article  Google Scholar 

  26. Pavan S, Meyer-Schaller N, Diepenbruck M, Kalathur RKR, Saxena M, Christofori G. A kinome-wide high-content siRNA screen identifies MEK5-ERK5 signaling as critical for breast cancer cell EMT and metastasis. Oncogene. 2018;37:4197–213.

    Article  CAS  Google Scholar 

  27. Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28:15–33.

    Article  Google Scholar 

  28. Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 2017;19:1189–201.

    Article  CAS  Google Scholar 

  29. Jiang Y, Zhan H. Communication between EMT and PD-L1 signaling: new insights into tumor immune evasion. Cancer Lett. 2020;468:72–81.

    Article  CAS  Google Scholar 

  30. Byers LA, Diao L, Wang J, Saintigny P, Girard L, Peyton M, et al. An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res. 2013;19:279–90.

    Article  CAS  Google Scholar 

  31. Waldmeier L, Meyer-Schaller N, Diepenbruck M, Christofori G. Py2T murine breast cancer cells, a versatile model of TGFbeta-induced EMT in vitro and in vivo. PLoS One. 2012;7:e48651.

    Article  CAS  Google Scholar 

  32. Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 1992;52:1399–405.

    CAS  PubMed  Google Scholar 

  33. Lehembre F, Yilmaz M, Wicki A, Schomber T, Strittmatter K, Ziegler D, et al. NCAM-induced focal adhesion assembly: a functional switch upon loss of E-cadherin. EMBO J. 2008;27:2603–15.

    Article  CAS  Google Scholar 

  34. Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest. 2005;115:44–55.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Petra Schmidt for technical assistance with immunoblotting and quantitative RT-PCR, Helena Antoniadis for help with mouse work, Christian Beisel and the D-BSSE sequencing facility for RNA-sequencing, Pascal Lorenz and the DBM Mattenstrasse microscopy facility for microscopy and image quantification support. This work was supported by the Swiss National Science Foundation (310030B_163471), the SystemsX.ch RTD Cellplasticity, the Swiss Cancer League (KFS-3479-08-2014), the Krebsliga Beider Basel (03-2013) (all GC) and by a Marie-Heim Vögtlin grant from the Swiss National Science Foundation (NM-S).

Author information

Authors and Affiliations

Authors

Contributions

NM-S managed the project, designed and performed the experiments, analyzed the data and wrote the manuscript. RI analyzed the ChIP-seq experiment, MD conducted 4T1 LT migration and invasion experiments, and ST performed gene expression analysis and siRNA and cDNA transfection experiments. GC contributed to project management, manuscript assembly and writing.

Corresponding authors

Correspondence to Nathalie Meyer-Schaller or Gerhard Christofori.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer-Schaller, N., Tiede, S., Ivanek, R. et al. A dual role of Irf1 in maintaining epithelial identity but also enabling EMT and metastasis formation of breast cancer cells. Oncogene 39, 4728–4740 (2020). https://doi.org/10.1038/s41388-020-1326-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1326-0

This article is cited by

Search

Quick links