Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic landscape and ligand-dependent activation of sonic hedgehog-Gli1 signaling in chordomas: a novel therapeutic target

Abstract

Chordoma, a rare neoplasm derived from intraosseous notochordal remnants, is unresponsive to conventional chemotherapy and radiotherapy. Sonic Hedgehog (Shh) is a crucial fetal notochord–secreted morphogen that directs notochordal development. The aim of this study was to determine the functional roles and therapeutic potential of Shh-Gli1 signaling in chordomas. Tissue samples and clinical profiles were collected from 42 patients with chordoma. The chordoma cell lines U-CH1 and MUG-Chor1 were used for functional experiments. Shh-Gli1 signaling pathway genetic alterations were screened, and the functions of the identified novel variants were analyzed using in silico analyses, real-time quantitative PCR, and minigene assays. Ligand-dependent Shh-Gli1 signaling activation was assessed using single- and dual-label immunostaining, western blot analysis, and a Shh-responsive Gli-luciferase reporter assay. The small-molecule inhibitor vismodegib was used to target Shh-Gli1 signaling in vitro and in vivo. Overall, 44 genetic alterations were identified, including four novel variants (c.67_69dupCTG in SMO, c.-6_-4dupGGC and c.3306 + 83_3306 + 84insG in PTCH1, and c.183-67_183-66delinsA in SUFU). Shh, PTCH1, SMO, SUFU, and Gli1 were extensively expressed in chordomas, and higher Gli1 expression correlated with poorer prognosis. A luciferase reporter assay and dual-label immunostaining indicated the occurrence of juxtacrine ligand-dependent Shh-Gli1 signaling activation. Vismodegib significantly inhibited cell proliferation and induced apoptosis and G1/S cell cycle arrest. In vivo investigation demonstrated that vismodegib effectively inhibited chordoma xenograft growth. This current preclinical evidence elucidates the therapeutic potential of Shh-Gli1 signaling pathway targeting for chordoma treatment. Vismodegib may be a promising targeted agent, and further clinical trials are warranted.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A hypothetical model of chordoma tumorigenesis, a schematic representation of the activated Shh-Gli1 signaling pathway in chordoma, and sequence chromatograms of the novel genetic variants.
Fig. 2: Single- and dual-label immunohistochemistry.
Fig. 3: Kaplan–Meier curves, western blot analysis, luciferase reporter assay, and cell viability and cytotoxicity assays.
Fig. 4: DAPI staining and flow cytometric analyses.
Fig. 5: Immunofluorescence analysis and in vivo experiments.

Similar content being viewed by others

References

  1. Lee IJ, Lee RJ, Fahim DK. Prognostic factors and survival outcome in patients with chordoma in the United States: a population-based analysis. World Neurosurg. 2017;104:346–55.

    Article  PubMed  Google Scholar 

  2. Chen H, Garbutt CC, Spentzos D, Choy E, Hornicek FJ, Duan Z. Expression and Therapeutic Potential of SOX9 in Chordoma. Clin Cancer Res. 2017;23:5176–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ahmed AT, Abdel-Rahman O, Morsy M, Mustafa K, Testini P, Aleem IS, et al. Management of sacrococcygeal chordoma: a systematic review and meta-analysis of observational studies. Spine (Philos Pa 1976). 2018;43:E1157–E1169.

    Article  Google Scholar 

  4. Otani R, Mukasa A, Shin M, Omata M, Takayanagi S, Tanaka S, et al. Brachyury gene copy number gain and activation of the PI3K/Akt pathway: association with upregulation of oncogenic Brachyury expression in skull base chordoma. J Neurosurg. 2018;128:1428–37.

    Article  CAS  PubMed  Google Scholar 

  5. Kitamura Y, Sasaki H, Yoshida K. Genetic aberrations and molecular biology of skull base chordoma and chondrosarcoma. Brain Tumor Pathol. 2017;34:78–90.

    Article  PubMed  Google Scholar 

  6. Yakkioui Y, van Overbeeke JJ, Santegoeds R, van Engeland M, Temel Y. Chordoma: the entity. Biochim Biophys Acta. 2014;1846:655–69.

    CAS  PubMed  Google Scholar 

  7. Williams S, Alkhatib B, Serra R. Development of the axial skeleton and intervertebral disc. Curr Top Dev Biol. 2019;133:49–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhu J, Kwan KM, Mackem S. Putative oncogene Brachyury (T) is essential to specify cell fate but dispensable for notochord progenitor proliferation and EMT. Proc Natl Acad Sci. 2016;113:3820–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gotz W, Kasper M, Fischer G, Herken R. Intermediate filament typing of the human embryonic and fetal notochord. Cell Tissue Res. 1995;280:455–62.

    Article  CAS  PubMed  Google Scholar 

  10. Sun X, Hornicek F, Schwab JH. Chordoma: an update on the pathophysiology and molecular mechanisms. Curr Rev Musculoskelet Med. 2015;8:344–52.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Choi KS, Cohn MJ, Harfe BD. Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: implications for disk degeneration and chordoma formation. Dev Dyn. 2008;237:3953–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cortes JE, Gutzmer R, Kieran MW, Solomon JA. Hedgehog signaling inhibitors in solid and hematological cancers. Cancer Treat Rev. 2019;76:41–50.

    Article  CAS  PubMed  Google Scholar 

  13. Cates JM, Itani DM, Coffin CM, Harfe BD. The sonic hedgehog pathway in chordoid tumours. Histopathology. 2010;56:978–9.

    Article  PubMed  Google Scholar 

  14. Akhavan-Sigari R, Schulz-Schaeffer W, Angelika Harcej A, Rohde V. The importance of the hedgehog signaling pathway in tumorigenesis of spinal and cranial chordoma. J Clin Med. 2019;8:248.

    Article  PubMed Central  CAS  Google Scholar 

  15. Scheil-Bertram S, Kappler R, von Baer A, Hartwig E, Sarkar M, Serra M, et al. Molecular profiling of chordoma. Int J Oncol. 2014;44:1041–55.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wu F, Zhang Y, Sun B, McMahon AP, Wang Y. Hedgehog signaling: from basic biology to cancer therapy. Cell Chem Biol. 2017;24:252–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sari IN, Phi LTH, Jun N, Wijaya YT, Lee S, Kwon HY. Hedgehog signaling in cancer: a prospective therapeutic target for eradicating cancer stem cells. Cells. 2018;7:208.

    Article  PubMed Central  CAS  Google Scholar 

  18. Begnini A, Tessari G, Turco A, Malerba G, Naldi L, Gotti E, et al. PTCH1 gene haplotype association with basal cell carcinoma after transplantation. Br J Dermatol. 2010;163:364–70.

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Wang J, Pan W, Zhou Y, Xiao Y, Zhou K, et al. Common genetic variations in Patched1 (PTCH1) gene and risk of hirschsprung disease in the Han Chinese population. PLoS One. 2013;8:e75407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bari R, Hartford C, Chan WK, Vong Q, Li Y, Gan K, et al. Genome-wide single-nucleotide polymorphism analysis revealed SUFU suppression of acute graft-versus-host disease through downregulation of HLA-DR expression in recipient dendritic cells. Sci Rep.2015;5:11098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hancock DB, Eijgelsheim M, Wilk JB, Gharib SA, Loehr LR, Marciante KD, et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet. 2010;42:45–52.

    Article  CAS  PubMed  Google Scholar 

  22. Magic M, Zeljic K, Jovandic S, Stepic J, Pejovic M, Colic S, et al. Hedgehog signaling pathway and vitamin D receptor gene variants as potential risk factors in odontogenic cystic lesions. Clin Oral Investig. 2019;23:2675–84.

    Article  PubMed  Google Scholar 

  23. Szkandera J, Pichler M, Absenger G, Stotz M, Weissmueller M, Samonigg H, et al. A functional germline variant in GLI1 implicates hedgehog signaling in clinical outcome of stage II and III colon carcinoma patients. Clin Cancer Res. 2014;20:1687–97.

    Article  CAS  PubMed  Google Scholar 

  24. Armas-Lopez L, Zuniga J, Arrieta O, Avila-Moreno F. The Hedgehog-GLI pathway in embryonic development and cancer: implications for pulmonary oncology therapy. Oncotarget. 2017;8:60684–703.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Regl G, Neill GW, Eichberger T, Kasper M, Ikram MS, Koller J, et al. Human GLI2 and GLI1 are part of a positive feedback mechanism in Basal Cell Carcinoma. Oncogene. 2002;21:5529–39.

    Article  CAS  PubMed  Google Scholar 

  26. Incardona JP, Roelink H. The role of cholesterol in Shh signaling and teratogen-induced holoprosencephaly. Cell Mol Life Sci. 2000;57:1709–19.

    Article  CAS  PubMed  Google Scholar 

  27. Skoda AM, Simovic D, Karin V, Kardum V, Vranic S, Serman L. The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosn J Basic Med Sci. 2018;18:8–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reifenberger J, Wolter M, Knobbe CB, Kohler B, Schonicke A, Scharwachter C, et al. Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br J Dermatol. 2005;152:43–51.

    Article  CAS  PubMed  Google Scholar 

  29. Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM, et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science. 1996;272:1668–71.

    Article  CAS  PubMed  Google Scholar 

  30. Raffel C, Jenkins RB, Frederick L, Hebrink D, Alderete B, Fults DW, et al. Sporadic medulloblastomas contain PTCH mutations. Cancer Res. 1997;57:842–5.

    CAS  PubMed  Google Scholar 

  31. Taylor MD, Liu L, Raffel C, Hui CC, Mainprize TG, Zhang X, et al. Mutations in SUFU predispose to medulloblastoma. Nat Genet. 2002;31:306–10.

    Article  CAS  PubMed  Google Scholar 

  32. Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K, et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature. 2003;425:846–51.

    Article  CAS  PubMed  Google Scholar 

  33. Kubo M, Nakamura M, Tasaki A, Yamanaka N, Nakashima H, Nomura M, et al. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res. 2004;64:6071–4.

    Article  CAS  PubMed  Google Scholar 

  34. Theunissen JW, de Sauvage FJ. Paracrine Hedgehog signaling in cancer. Cancer Res. 2009;69:6007–10.

    Article  CAS  PubMed  Google Scholar 

  35. Tian H, Callahan CA, DuPree KJ, Darbonne WC, Ahn CP, Scales SJ, et al. Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc Natl Acad Sci USA. 2009;106:4254–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sekulic A, Migden MR, Oro AE, Dirix L, Lewis KD, Hainsworth JD, et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N. Engl J Med. 2012;366:2171–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Duman-Scheel M, Weng L, Xin S, Du W. Hedgehog regulates cell growth and proliferation by inducing Cyclin D and Cyclin E. Nature. 2002;417:299–304.

    Article  CAS  PubMed  Google Scholar 

  38. Bigelow RL, Chari NS, Unden AB, Spurgers KB, Lee S, Roop DR, et al. Transcriptional regulation of bcl-2 mediated by the sonic hedgehog signaling pathway through gli-1. J Biol Chem. 2004;279:1197–205.

    Article  CAS  PubMed  Google Scholar 

  39. Amini P, Ettlin J, Opitz L, Clementi E, Malbon A, Markkanen E. An optimised protocol for isolation of RNA from small sections of laser-capture microdissected FFPE tissue amenable for next-generation sequencing. BMC Mol Biol. 2017;18:22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Sinicrope FA, Ruan SB, Cleary KR, Stephens LC, Lee JJ, Levin B. bcl-2 and p53 oncoprotein expression during colorectal tumorigenesis. Cancer Res. 1995;55:237–41.

    CAS  PubMed  Google Scholar 

  41. Vinall RL, Hwa K, Ghosh P, Pan CX, Lara PN Jr, de Vere White RW. Combination treatment of prostate cancer cell lines with bioactive soy isoflavones and perifosine causes increased growth arrest and/or apoptosis. Clin Cancer Res. 2007;13:6204–16.

    Article  CAS  PubMed  Google Scholar 

  42. Sebaugh JL. Guidelines for accurate EC50/IC50 estimation. Pharm Stat. 2011;10:128–34.

    Article  CAS  PubMed  Google Scholar 

  43. Freireich EJ, Gehan EA, Rall DP, Schmidt LH, Skipper HE. Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man. Cancer Chemother Rep. 1966;50:219–44.

    CAS  PubMed  Google Scholar 

  44. Charan J, Kantharia ND. How to calculate sample size in animal studies? J Pharm Pharmacother. 2013;4:303–6.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81641103 to XL; 81901202 to CY) and the Postdoctoral Science Foundation of China (2018M630047 to CY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoguang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Yong, L., Liang, C. et al. Genetic landscape and ligand-dependent activation of sonic hedgehog-Gli1 signaling in chordomas: a novel therapeutic target. Oncogene 39, 4711–4727 (2020). https://doi.org/10.1038/s41388-020-1324-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1324-2

Search

Quick links