Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HSP47 promotes metastasis of breast cancer by interacting with myosin IIA via the unfolded protein response transducer IRE1α

Abstract

Breast cancer (BC) is an aggressive cancer that is a leading cause of cancer-associated death in women worldwide. Although increased expression of heat shock protein 47 (HSP47), a collagen-specific chaperone, is associated with the high malignancy of BC, its role in BC remains largely unclear. Here we show that a small population of high-invasive BC cells expresses HSP47 and that HSP47-positive high-invasive BC cells have a high metastatic potential that is completely abolished by disruption of HSP47. HSP47 interacts with non-muscle myosin IIA (NMIIA) via the unfolded protein response transducer IRE1α, resulting in enhancement of the metastatic potential of high-invasive BC cells by augmenting the contractile force of actin filaments. Ablation of NMIIA abrogates the metastatic potential of HSP47-positive high-invasive BC cells. We further show that forced expression of NMIIA confers a high metastatic potential on low-invasive BC cells in which HSP47 but not NMIIA is expressed. Overall, our study indicates that HSP47 acts as a stimulator for metastasis of BC cells and suggest that HSP47 may be a candidate for a therapeutic target against BC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HSP47 is expressed in a small population of high-invasive BC cells.
Fig. 2: Overexpression of HSP47 promotes the metastatic potential of high-invasive BC cells.
Fig. 3: In vivo-derived HSP47+high-invasive BC cells have a high potential for metastasis.
Fig. 4: Disruption of HSP47 abolishes the metastatic potential of high-invasive BC cells.
Fig. 5: HSP47 interacts with NMIIA in high-invasive BC cells.
Fig. 6: Disruption of NMIIA abolishes the metastatic potential of HSP47+high-invasive BC cells.
Fig. 7: Expression of NMIIA promotes the metastatic potential of low-invasive BC cells.

Similar content being viewed by others

References

  1. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    CAS  PubMed  Google Scholar 

  2. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer. 2012;12:323–34.

    CAS  PubMed  Google Scholar 

  4. Yeo SK, Guan JL. Breast cancer: multiple subtypes within a tumor? Trends Cancer. 2017;3:753–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Carey L, Winer E, Viale G, Cameron D, Gianni L. Triple-negative breast cancer: disease entity or title of convenience? Nat Rev Clin Oncol. 2010;7:683–92.

    PubMed  Google Scholar 

  6. Volinia S, Galasso M, Sana ME, Wise TF, Palatini J, Huebner K, et al. Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc Natl Acad Sci USA. 2012;109:3024–9.

    CAS  PubMed  Google Scholar 

  7. Kumar A. Bayesian phylogeny analysis of vertebrate serpins illustrates evolutionary conservation of the intron and indels based six groups classification system from lampreys for 500 MY. PeerJ 2015;3:e1026.

    PubMed  PubMed Central  Google Scholar 

  8. Kumar A, Bhandari A, Sarde SJ, Goswami C. Ancestry & molecular evolutionary analyses of heat shock protein 47 kDa (HSP47/SERPINH1). Sci Rep. 2017;7:10394.

    PubMed  PubMed Central  Google Scholar 

  9. Ito S, Nagata K. Biology of Hsp47 (Serpin H1), a collagen-specific molecular chaperone. Semin Cell Dev Biol. 2017;62:142–51.

    CAS  PubMed  Google Scholar 

  10. Ito S, Nagata K. Roles of the endoplasmic reticulum-resident, collagen-specific molecular chaperone Hsp47 in vertebrate cells and human disease. J Biol Chem. 2019;294:2133–41.

    CAS  PubMed  Google Scholar 

  11. Matsuoka Y, Kubota H, Adachi E, Nagai N, Marutani T, Hosokawa N, et al. Insufficient folding of type IV collagen and formation of abnormal basement membrane-like structure in embryoid bodies derived from Hsp47-null embryonic stem cells. Mol Biol Cell. 2004;15:4467–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ishida Y, Kubota H, Yamamoto A, Kitamura A, Bächinger HP, Nagata K. Type I collagen in Hsp47-null cells is aggregated in endoplasmic reticulum and deficient in N-propeptide processing and fibrillogenesis. Mol Biol Cell. 2006;17:2346–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Marutani T, Yamamoto A, Nagai N, Kubota H, Nagata K. Accumulation of type IV collagen in dilated ER leads to apoptosis in Hsp47-knockout mouse embryos via induction of CHOP. J Cell Sci. 2004;117:5913–22.

    CAS  PubMed  Google Scholar 

  14. Kawasaki K, Ushioda R, Ito S, Ikeda K, Masago Y, Nagata K. Deletion of the collagen-specific molecular chaperone Hsp47 causes endoplasmic reticulum stress-mediated apoptosis of hepatic stellate cells. J Biol Chem. 2015;290:3639–46.

    CAS  PubMed  Google Scholar 

  15. Poschmann G, Sitek B, Sipos B, Ulrich A, Wiese S, Stephan C, et al. Identification of proteomic differences between squamous cell carcinoma of the lung and bronchial epithelium. Mol Cell Proteom. 2009;8:1105–16.

    CAS  Google Scholar 

  16. Zhang X, Yang JJ, Kim YS, Kim KY, Ahn WS, Yang S. An 8-gene signature, including methylated and down-regulated glutathione peroxidase 3, of gastric cancer. Int J Oncol. 2010;36:405–14.

    CAS  PubMed  Google Scholar 

  17. Zhao D, Jiang X, Yao C, Zhang L, Liu H, Xia H, et al. Heat shock protein 47 regulated by miR-29a to enhance glioma tumor growth and invasion. J Neurooncol. 2014;118:39–47.

    CAS  PubMed  Google Scholar 

  18. Zhu J, Xiong G, Fu H, Wvers BM, Zhou BP, Xu R. Chaperone Hsp47 drives malignant growth and invasion by modulating an ECM gene network. Cancer Res 2015;75:1580–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mori K, Toiyama Y, Otake K, Fujikawa H, Saigusa S, Hiro J, et al. Proteomics analysis of differential protein expression identifies heat shock protein 47 as a predictive marker for lymph node metastasis in patients with colorectal cancer. Int J Cancer. 2017;140:1425–35.

    CAS  PubMed  Google Scholar 

  20. Duarte BDP, Bonatto D. The heat shock protein 47 as a potential biomarker and a therapeutic agent in cancer research. J Cancer Res Clin Oncol. 2018;144:2319–28.

    CAS  PubMed  Google Scholar 

  21. Parveen A, Kumar R, Tandon R, Khurana S, Goswami C, Kumar A. Mutational hotspots of HSP47 and its potential role in cancer and bone-disorders. Genomics. 2019;S0888-7543:30671–2.

    Google Scholar 

  22. Even-Ram S, Doyle AD, Conti MA, Matsumoto K, Adelstein RS, Yamada KM. Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk. Nat Cell Biol. 2007;9:299–309.

    CAS  PubMed  Google Scholar 

  23. Tojkander S, Gateva G, Lappalainen P. Actin stress fibers–assembly, dynamics and biological roles. J Cell Sci. 2012;125:1855–64.

    CAS  PubMed  Google Scholar 

  24. Newell-Litwa KA, Horwitz R, Lamers ML. Non-muscle myosin II in disease: mechanisms and therapeutic opportunities. Dis Model Mech. 2015;8:1495–515.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sepulveda D, Rojas-Rivera D, Rodríguez DA, Groenendyk J, Köhler A, Lebeaupin C, et al. Interactome screening identifies the ER luminal chaperone Hsp47 as a regulator of the unfolded protein response transducer IRE1α. Mol Cell. 2018;69:238–52.

    CAS  PubMed  Google Scholar 

  26. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–22.

    CAS  PubMed  Google Scholar 

  27. Sasaki H, Sato T, Yamauchi N, Okamoto T, Kobayashi D, Iyama S, et al. Induction of heat shock protein 47 synthesis by TGF-beta and IL-1 beta via enhancement of the heat shock element binding activity of heat shock transcription factor 1. J Immunol. 2002;168:5178–83.

    CAS  PubMed  Google Scholar 

  28. Honzawa Y, Nakase H, Shiokawa M, Yoshino T, Imaeda H, Matsuura M, et al. Involvement of interleukin-17A-induced expression of heat shock protein 47 in intestinal fibrosis in Crohn’s disease. Gut. 2014;63:1902–12.

    CAS  PubMed  Google Scholar 

  29. Santagata S, Xu YM, Wijeratne EM, Kontnik R, Rooney C, Perley CC, et al. Using the heat-shock response to discover anticancer compounds that target protein homeostasis. ACS Chem Biol. 2012;7:340–49.

    CAS  PubMed  Google Scholar 

  30. Xiong G, Chen J, Zhang G, Wang S, Kawasaki K, Zhu J, et al. Hsp47 promotes cancer metastasis by enhancing collagen-dependent cancer cell-platelet interaction. Proc Natl Acad Sci USA. 2020;117:3748–58.

    CAS  PubMed  Google Scholar 

  31. Albiges-Rizo C, Destaing O, Fourcade B, Planus E, Block MR. Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions. J Cell Sci. 2009;122:3037–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gimona M, Buccione R, Courtneidge SA, Linder S. Assembly and biological role of podosomes and invadopodia. Curr Opin Cell Biol. 2008;20:235–41.

    CAS  PubMed  Google Scholar 

  33. Conti MA, Adelstein RS. Nonmuscle myosin II moves in new directions. J Cell Sci. 2008;121:11–8.

    CAS  PubMed  Google Scholar 

  34. Derycke L, Stove C, Vercoutter-Edouart AS, De Wever O, Dollé L, Colpaert N, et al. The role of non-muscle myosin IIA in aggregation and invasion of human MCF-7 breast cancer cells. Int J Dev Biol. 2011;55:835–40.

    PubMed  Google Scholar 

  35. Liu R, Zhang Q, Tang Z, Peng Z, Cai X, Fu Z, et al. High-level expression of MYH9 predicts poor prognosis in patients with colon cancer. Int J Clin Exp Pathol. 2017;10:5498–505.

    CAS  Google Scholar 

  36. Zhou P, Li Y, Li B, Zhang M, Liu Y, Yao Y, et al. NMIIA promotes tumor growth and metastasis by activating the Wnt/β-catenin signaling pathway and EMT in pancreatic cancer. Oncogene. 2019;38:5500–15.

    CAS  PubMed  Google Scholar 

  37. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141:52–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Winer A, Adams S, Mignatti P. Matrix metalloproteinase inhibitors in cancer therapy: turning past failures into future successes. Mol Cancer Ther. 2018;17:1147–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bachmeier BE, Nerlich AG, Lichtinghagen R, Sommerhoff CP. Matrix metalloproteinases (MMPs) in breast cancer cell lines of different tumorigenicity. Anticancer Res. 2001;21:3821–28.

    CAS  PubMed  Google Scholar 

  40. Köhrmann A, Kammerer U, Kapp M, Dietl J, Anacker J. Expression of matrix metalloproteinases (MMPs) in primary human breast cancer and breast cancer cell lines: new findings and review of the literature. BMC Cancer. 2009;9:188.

    PubMed  PubMed Central  Google Scholar 

  41. Vizoso FJ, González LO, Corte MD, Rodríguez JC, Vázquez J, Lamelas ML, et al. Study of matrix metalloproteinases and their inhibitors in breast cancer. Br J Cancer. 2007;96:903–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ren F, Tang R, Zhang X, Madushi WM, Luo D, Dang Y, et al. Overexpression of MMP family members functions as prognostic biomarker for breast cancer patients: a systematic review and meta-analysis. PLoS One. 2015;10:e0135544.

    PubMed  PubMed Central  Google Scholar 

  43. He Y, Beatty A, Han X, Ji Y, Ma X, Adelstein RS, et al. Nonmuscle myosin IIB links cytoskeleton to IRE1α signaling during ER stress. Dev Cell. 2012;23:1141–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ishiwata-Kimata Y, Yamamoto YH, Takizawa K, Kohno K, Kimata Y. F-actin and a type-II myosin are required for efficient clustering of the ER stress sensor Ire1. Cell Struct Funct. 2013;38:135–43.

    CAS  PubMed  Google Scholar 

  45. Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M, et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1 α pathway. Nature. 2014;508:103–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Li XX, Zhang HS, Xu YM, Zhang RJ, Chen Y, Fan L, et al. Knockdown of IRE1α inhibits colonic tumorigenesis through decreasing β-catenin and IRE1α targeting suppresses colon cancer cells. Oncogene. 2017;36:6738–46.

    CAS  PubMed  Google Scholar 

  47. Logue SE, McGrath EP, Cleary P, Greene S, Mnich K, Almanza A, et al. Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy. Nat Commun. 2018;9:3267.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Takayuki Sakurai (Shinshu University, Matsumoto, Japan) and Dr Norio Takei (Hokkaido University, Sapporo, Japan) for providing pCG-Sap I vector. The authors also thank Kaori Sakai-Sawada (Hokkaido University, Sapporo, Japan) for technical assistance of data acquisition in this study.

Author information

Authors and Affiliations

Authors

Contributions

Study design and concept: AY, KM, YT. Data acquisition: AY. Data analysis and interpretations: AY. Manuscript preparation: AY, YT. Manuscript review: AY, KM, YT. All authors read and approved the final manuscript. This work was supported by Nitto Denko Corporation (Osaka, Japan). This work was also supported in part by the Grant-in-Aid for Scientific Research C from MEXT Japan Society for the Promotion of Science (KAKENHI18K07287 to AY).

Corresponding author

Correspondence to Akihiro Yoneda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

All procedures of mouse experiments were reviewed and approved by Experimental Animal Ethics Committee of Hokkaido University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoneda, A., Minomi, K. & Tamura, Y. HSP47 promotes metastasis of breast cancer by interacting with myosin IIA via the unfolded protein response transducer IRE1α. Oncogene 39, 4519–4537 (2020). https://doi.org/10.1038/s41388-020-1311-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1311-7

This article is cited by

Search

Quick links