Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Combination of CHEK1/2 inhibition and ionizing radiation results in abscopal tumor response through increased micronuclei formation

Abstract

We explore a novel strategy of activating immune signaling through increased micronuclei formation utilizing a cell cycle checkpoint inhibitor to drive cell cycle progression following ionizing radiation. The Chk1/2 inhibitor AZD7762 is used to abrogate radiation therapy (RT)-induced G2/M cell cycle arrest in multiple cell lines and, we find that this therapeutic combination promotes increased micronuclei formation in vitro and subsequently drives increased type I interferon signaling and cytotoxic T-cell activation. In vivo studies using B16-F10 melanoma cancer cells implanted in C57/BL6 mice demonstrate improved rates of tumor control at the abscopal (unirradiated) site, located outside of the radiation field, only in the AZD7762 + RT group, with a corresponding reduction in mean tumor volume, increase in the CD8 T-cell population, and immune activated gene signaling. Our results demonstrate that targeted inhibition of cell cycle checkpoint activation following ionizing radiation drives increased production of immunogenic micronuclei, leading to systemic tumor response with potential future clinical benefit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AZD7762 treatment abrogates RT induced G2/M Checkpoint.
Fig. 2: AZD7762 + RT combination treatment increases micronuclei formation.
Fig. 3: cGAS co-localizes with induced micronuclei.
Fig. 4: AZD7762 + RT combination increases Type I interferon regulated gene and protein expression and is mediated through the STING pathway.
Fig. 5: Secreted IFN-β protein expression by ELISA in B16F10 tumor cells.
Fig. 6: Tumor response in implanted B16-F10 tumors.
Fig. 7: Tumor volume in implanted B16-F10 tumors.
Fig. 8: Immune activation by CD8 T-cell recruitment and gene expression in implanted B16-F10 tumors.

Similar content being viewed by others

References

  1. Borghaei H, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brahmer J, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Reck M, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33.

    Article  CAS  PubMed  Google Scholar 

  4. Gandhi L, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl J Med. 2018;378:2078–92.

    Article  CAS  PubMed  Google Scholar 

  5. Reck M. Pembrolizumab as first-line therapy for metastatic non-small-cell lung cancer. Immunotherapy. 2018;10:93–105.

    Article  CAS  PubMed  Google Scholar 

  6. Shaverdian N, et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 2017;18:895–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, Greenberg RA. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature. 2017;548:466–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mackenzie KJ, et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature. 2017;548:461–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol. 2016;17:1142–9.

    Article  CAS  PubMed  Google Scholar 

  10. Diner EJ, et al. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep. 2013;3:1355–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Woo SR, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014;41:830–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deng L, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 2014;41:843–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339:786–91.

    Article  CAS  PubMed  Google Scholar 

  14. Woo SR, Corrales L, Gajewski TF. The STING pathway and the T cell-inflamed tumor microenvironment. Trends Immunol. 2015;36:250–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dou Z, et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature. 2017;550:402–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. al-Khodairy F, Fotou E, Sheldrick KS, Griffiths DJ, Lehmann AR, Carr AM. Identification and characterization of new elements involved in checkpoint and feedback controls in fission yeast. Mol Biol Cell. 1994;5:147–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Canman CE, et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998;281:1677–9.

    Article  CAS  PubMed  Google Scholar 

  18. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991;51:6304–11.

    CAS  PubMed  Google Scholar 

  19. Walworth N, Davey S, Beach D. Fission yeast chk1 protein kinase links the rad checkpoint pathway to cdc2. Nature. 1993;363:368–71.

    Article  CAS  PubMed  Google Scholar 

  20. Walworth NC, Bernards R. Rad-dependent response of the chk1-encoded protein kinase at the DNA damage checkpoint. Science. 1996;271:353–6.

    Article  CAS  PubMed  Google Scholar 

  21. Xu B, Kim S, Kastan MB. Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol. 2001;21:3445–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao H, Watkins JL, Piwnica-Worms H. Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proc Natl Acad Sci USA. 2002;99:14795–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma CX, Janetka JW, Piwnica-Worms H. Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med. 2011;17:88–96.

    Article  CAS  PubMed  Google Scholar 

  24. Morgan MA, et al. Mechanism of radiosensitization by the Chk1/2 inhibitor AZD7762 involves abrogation of the G2 checkpoint and inhibition of homologous recombinational DNA repair. Cancer Res. 2010;70:4972–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zabludoff SD, et al. AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol Cancer Ther. 2008;7:2955–66.

    Article  CAS  PubMed  Google Scholar 

  26. Grandvaux N, et al. Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes. J Virol. 2002;76:5532–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hartlova A, et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity. 2015;42:332–43.

    Article  PubMed  CAS  Google Scholar 

  28. Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 2009;461:788–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Karpova AY, Trost M, Murray JM, Cantley LC, Howley PM. Interferon regulatory factor-3 is an in vivo target of DNA-PK. Proc Natl Acad Sci USA. 2002;99:2818–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu HF, et al. Diallyl disulfide induced signal transducer and activator of transcription 1 expression in human colon cancer colo 205 cells using differential display RT-PCR. Cancer Genomics Proteom. 2007;4:93–7.

    CAS  Google Scholar 

  31. Maity A, et al. A phase I trial of pembrolizumab with hypofractionated radiotherapy in patients with metastatic solid tumours. Br J Cancer. 2018;119:1200–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Melms JC. Inhibition of haspin kinase promotes cell-intrinsic and extrinsic antitumor activity. Cancer Res. 2020;80:798–810. https://doi.org/10.1158/0008-5472.CAN-19-2330. Epub 27 Dec 2019.

    Article  CAS  PubMed  Google Scholar 

  33. Schoonen PM, et al. Premature mitotic entry induced by ATR inhibition potentiates olaparib inhibition-mediated genomic instability, inflammatory signaling, and cytotoxicity in BRCA2-deficient cancer cells. Mol Oncol. 2019;13:2422–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tao Y, et al. The aurora B kinase inhibitor AZD1152 sensitizes cancer cells to fractionated irradiation and induces mitotic catastrophe. Cell Cycle. 2009;8:3172–81.

    Article  CAS  PubMed  Google Scholar 

  35. Zeng L, Beggs RR, Cooper TS, Weaver AN, Yang ES. Combining Chk1/2 inhibition with cetuximab and radiation enhances in vitro and in vivo cytotoxicity in head and neck squamous cell carcinoma. Mol Cancer Ther. 2017;16:591–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dillon MT, et al. Radiosensitization by the ATR inhibitor AZD6738 through generation of acentric micronuclei. Mol Cancer Ther. 2017;16:25–34.

    Article  CAS  PubMed  Google Scholar 

  37. Postow MA, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366:925–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Twyman-Saint Victor C, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520:373–7.

    Article  CAS  PubMed  Google Scholar 

  39. Vendetti FP, et al. ATR kinase inhibitor AZD6738 potentiates CD8+ T cell-dependent antitumor activity following radiation. J Clin Invest. 2018;128:3926–40.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Aarts M, et al. Forced mitotic entry of S-phase cells as a therapeutic strategy induced by inhibition of WEE1. Cancer Discov. 2012;2:524–39.

    Article  CAS  PubMed  Google Scholar 

  41. Moran DM, Gawlak G, Jayaprakash MS, Mayar S, Maki CG. Geldanamycin promotes premature mitotic entry and micronucleation in irradiated p53/p21 deficient colon carcinoma cells. Oncogene. 2008;27:5567–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hamilton DH, Huang B, Fernando RI, Tsang KY, Palena C. WEE1 inhibition alleviates resistance to immune attack of tumor cells undergoing epithelial-mesenchymal transition. Cancer Res. 2014;74:2510–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cuneo KC. et al. Dose escalation trial of the Wee1 inhibitor adavosertib (AZD1775) in combination with gemcitabine and radiation for patients with locally advanced pancreatic cancer. J Clin Oncol. 2019;37:2643–50. https://doi.org/10.1200/JCO.19.00730. Epub 9 Aug 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guzi TJ, et al. Targeting the replication checkpoint using SCH 900776, a potent and functionally selective CHK1 inhibitor identified via high content screening. Mol Cancer Ther. 2011;10:591–602.

    Article  CAS  PubMed  Google Scholar 

  45. Thomas C, et al. ERbeta1 represses basal breast cancer epithelial to mesenchymal transition by destabilizing EGFR. Breast Cancer Res. 2012;14:R148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by NIH/NCI grant (1R01CA182747 (PI: AM, CK) and the University of Pennsylvania Radiation Oncology Resident Research Award (to H-HC). The authors thank Roger Greenberg group for contribution of cGAS constructs.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: H-HC, I-VK, CT and AM. Development of methodology: H-HC, I-VK, CT, AF, CK and AM. Acquisition of data (provided animals, acquired, and managed patients, provided facilities, etc.): H-HC, I-VK, CT, and NBF. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, and computational analysis): H-HC, I-VK. Writing, review, and/or revision of the manuscript: H-HC, I-VK, CT, NBF, AF, CK and AM. Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): H-HC, I-VK and NBF. Study supervision: AM.

Corresponding author

Correspondence to Amit Maity.

Ethics declarations

Conflict of interest

AM reports receiving research funding from Merck. No potential competing interests are reported by the other authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, HH., Karagounis, I.V., Thomas, C. et al. Combination of CHEK1/2 inhibition and ionizing radiation results in abscopal tumor response through increased micronuclei formation. Oncogene 39, 4344–4357 (2020). https://doi.org/10.1038/s41388-020-1300-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1300-x

This article is cited by

Search

Quick links