Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long noncoding RNA PENG upregulates PDZK1 expression by sponging miR-15b to suppress clear cell renal cell carcinoma cell proliferation

Abstract

PDZK1 downregulation was reported to independently predict poor prognosis of clear cell renal cell carcinoma (ccRCC) patients and induce ccRCC development and progression. However, the underlying mechanism of PDZK1 downregulation remains unknown. Competing endogenous RNA (ceRNA) networks are emerging as new players in gene regulation and are associated with cancer development. ceRNAs regulate other RNA transcripts by competing for shared miRNAs. To investigate the role and mechanism of ceRNAs in PDZK1 downregulation and the development of ccRCC, we searched databases for miRNAs and lncRNAs that regulate PDZK1 expression in ccRCC tissues and assessed their effects in ccRCC. We found that miR-15b was expressed at higher levels in ccRCC tissues, and its upregulation was clinically associated with lower PDZK1 level, larger tumor size and shorter survival time of ccRCC patients. Conversely, a novel lncRNA (lncPENG) was expressed at a lower level in ccRCC tissues, and its downregulation was associated with the same effects as upregulation of miR-15b. Downregulation of miR-15b and upregulation of lncPENG resulted in a significant increase in PDZK1 level and inhibition of proliferation in vitro and in vivo. Mechanistically, lncPENG directly bound to miR-15b and effectively functioned as a sponge for miR-15b to modulate the expression of PDZK1. Thus, lncPENG may function as a ceRNA to attenuate miR-15b-dependent PDZK1 downregulation and inhibit cell proliferation, suggesting that it may be clinically valuable as a therapeutic target and a prognostic biomarker of ccRCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: miR-15b targets PDZK1 and is associated with proliferation and prognosis in ccRCC.
Fig. 2: miR-15b inhibits the expression of target gene PDZK1.
Fig. 3: miR-15b promotes proliferation of ccRCC cells in vitro and in vivo by inhibiting PDZK1 expression.
Fig. 4: lncPENG as a possible RNA competing with the PDZK1 mRNA correlates with prognosis of ccRCC and upregulates PDZK1 expression.
Fig. 5: lncPENG inhibits proliferation of ccRCC cells in vitro and in vivo via upregulating PDZK1 expression.
Fig. 6: lncPENG acts as a ceRNA directly binding to miR-15b.
Fig. 7: lncPENG regulates miR-15b/PDZK1-mediated proliferation of ccRCC cells via ceRNA mechanism.

Similar content being viewed by others

References

  1. Pantuck AJ, Zisman A, Belldegrun AS. The changing natural history of renal cell carcinoma. J Urol. 2001;166:1611–23.

    Article  CAS  Google Scholar 

  2. Flanigan RC. Debulking nephrectomy in metastatic renal cancer. Clin Cancer Res. 2004;10:6335S–41S.

    Article  Google Scholar 

  3. Eggener SE, Yossepowitch O, Pettus JA, Snyder ME, Motzer RJ, Russo P. Renal cell carcinoma recurrence after nephrectomy for localized disease: predicting survival from time of recurrence. J Clin Oncol. 2006;24:3101–6.

    Article  Google Scholar 

  4. Minasian LM, Motzer RJ, Gluck L, Mazumdar M, Vlamis V, Krown SE. Interferon alfa-2a in advanced renal cell carcinoma: treatment results and survival in 159 patients with long-term follow-up. J Clin Oncol. 1993;11:1368–75.

    Article  CAS  Google Scholar 

  5. Hadoux J, Vignot S, De La Motte Rouge T. Renal cell carcinoma: focus on safety and efficacy of temsirolimus. Clin Med Insights Oncol. 2010;4:143–54.

    Article  CAS  Google Scholar 

  6. Zhu H, Wang Z, Xu Q, Zhang Y, Zhai Y, Bai J, et al. Inhibition of STAT1 sensitizes renal cell carcinoma cells to radiotherapy and chemotherapy. Cancer Biol Ther. 2012;13:401–7.

    Article  CAS  Google Scholar 

  7. Kocher O, Comella N, Tognazzi K, Brown LF. Identification and partial characterization of PDZK1: a novel protein containing PDZ interaction domains. Lab Investig. 1998;78:117–25.

    CAS  PubMed  Google Scholar 

  8. Ghosh MG, Thompson DA, Weigel RJPDZK1. and GREB1 are estrogen-regulated genes expressed in hormone-responsive breast cancer. Cancer Res. 2000;60:6367–75.

    CAS  PubMed  Google Scholar 

  9. Inoue J, Otsuki T, Hirasawa A, Imoto I, Matsuo Y, Shimizu S, et al. Overexpression of PDZK1 within the 1q12-q22 amplicon is likely to be associated with drug-resistance phenotype in multiple myeloma. Am J Pathol. 2004;165:71–81.

    Article  CAS  Google Scholar 

  10. Tao T, Yang X, Zheng J, Feng D, Qin Q, Shi X, et al. PDZK1 inhibits the development and progression of renal cell carcinoma by suppression of SHP-1 phosphorylation. Oncogene. 2017;36:6119–31.

    Article  CAS  Google Scholar 

  11. Zheng J, Wang L, Peng Z, Yang Y, Feng D, He J. Low level of PDZ domain containing 1 (PDZK1) predicts poor clinical outcome in patients with clear cell renal cell carcinoma. EBioMedicine. 2017;15:62–72.

    Article  Google Scholar 

  12. Wen LZ, Ding K, Wang ZR, Ding CH, Lei SJ, Liu JP, et al. SHP-1 acts as a tumor suppressor in hepatocarcinogenesis and HCC progression. Cancer Res. 2018;78:4680–91.

    Article  CAS  Google Scholar 

  13. Liu CY, Huang TT, Chu PY, Huang CT, Lee CH, Wang WL, et al. The tyrosine kinase inhibitor nintedanib activates SHP-1 and induces apoptosis in triple-negative breast cancer cells. Exp Mol Med. 2017;49:e366.

    Article  Google Scholar 

  14. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146:353–8.

    Article  CAS  Google Scholar 

  15. Yang C, Wu D, Gao L, Liu X, Jin Y, Wang D, et al. Competing endogenous RNA networks in human cancer: hypothesis, validation, and perspectives. Oncotarget. 2016;7:13479–90.

    Article  Google Scholar 

  16. Hirata H, Hinoda Y, Shahryari V, Deng G, Nakajima K, Tabatabai ZL, et al. Long noncoding RNA MALAT1 promotes aggressive renal cell carcinoma through Ezh2 and interacts with miR-205. Cancer Res. 2015;75:1322–31.

    Article  CAS  Google Scholar 

  17. Yu G, Yao W, Gumireddy K, Li A, Wang J, Xiao W, et al. Pseudogene PTENP1 functions as a competing endogenous RNA to suppress clear-cell renal cell carcinoma progression. Mol Cancer Ther. 2014;13:3086–97.

    Article  CAS  Google Scholar 

  18. Xiao H, Tang K, Liu P, Chen K, Hu J, Zeng J, et al. LncRNA MALAT1 functions as a competing endogenous RNA to regulate ZEB2 expression by sponging miR-200s in clear cell kidney carcinoma. Oncotarget. 2015;6:38005–15.

    Article  Google Scholar 

  19. Xia T, Chen S, Jiang Z, Shao Y, Jiang X, Li P, et al. Long noncoding RNA FER1L4 suppresses cancer cell growth by acting as a competing endogenous RNA and regulating PTEN expression. Sci Rep. 2015;5:13445.

    Article  CAS  Google Scholar 

  20. Rashid F, Shah A, Shan G. Long Non-coding RNAs in the Cytoplasm. Genomics Proteom Bioinforma. 2016;14:73–80.

    Article  Google Scholar 

  21. Olejniczak M, Kotowska-Zimmer A, Krzyzosiak W. Stress-induced changes in miRNA biogenesis and functioning. Cell Mol Life Sci. 2018;75:177–91.

    Article  CAS  Google Scholar 

  22. Walker G, MacLeod K, Williams AR, Cameron DA, Smyth JF, Langdon SP. Estrogen-regulated gene expression predicts response to endocrine therapy in patients with ovarian cancer. Gynecol Oncol. 2007;106:461–8.

    Article  CAS  Google Scholar 

  23. Prestin K, Hussner J, Ferreira C, Seibert I, Breitung V, Zimmermann U, et al. Regulation of PDZ domain-containing 1 (PDZK1) expression by hepatocyte nuclear factor-1alpha (HNF1alpha) in human kidney. Am J Physiol Ren Physiol. 2017;313:F973–83.

    Article  Google Scholar 

  24. Tachibana K, Anzai N, Ueda C, Katayama T, Yamasaki D, Kirino T, et al. Regulation of the human PDZK1 expression by peroxisome proliferator-activated receptor alpha. FEBS Lett. 2008;582:3884–8.

    Article  CAS  Google Scholar 

  25. Kim H, Abd Elmageed ZY, Ju J, Naura AS, Abdel-Mageed AB, Varughese S, et al. PDZK1 is a novel factor in breast cancer that is indirectly regulated by estrogen through IGF-1R and promotes estrogen-mediated growth. Mol Med. 2013;19:253–62.

    Article  Google Scholar 

  26. Kim H, Tarhuni A, Abd Elmageed ZY, Boulares AH. Poly(ADP-ribose) polymerase as a novel regulator of 17beta-estradiol-induced cell growth through a control of the estrogen receptor/IGF-1 receptor/PDZK1 axis. J Transl Med. 2015;13:233.

    Article  Google Scholar 

  27. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99:15524–9.

    Article  CAS  Google Scholar 

  28. Satzger I, Mattern A, Kuettler U, Weinspach D, Voelker B, Kapp A, et al. MicroRNA-15b represents an independent prognostic parameter and is correlated with tumor cell proliferation and apoptosis in malignant melanoma. Int J Cancer. 2010;126:2553–62.

    CAS  PubMed  Google Scholar 

  29. Miah S, Dudziec E, Drayton RM, Zlotta AR, Morgan SL, Rosario DJ, et al. An evaluation of urinary microRNA reveals a high sensitivity for bladder cancer. Br J Cancer. 2012;107:123–8.

    Article  CAS  Google Scholar 

  30. Zhao C, Wang G, Zhu Y, Li X, Yan F, Zhang C, et al. Aberrant regulation of miR-15b in human malignant tumors and its effects on the hallmarks of cancer. Tumour Biol. 2016;37:177–83.

    Article  CAS  Google Scholar 

  31. Weirauch U, Beckmann N, Thomas M, Grunweller A, Huber K, Bracher F, et al. Functional role and therapeutic potential of the pim-1 kinase in colon carcinoma. Neoplasia. 2013;15:783–94.

    Article  CAS  Google Scholar 

  32. Pennisi E. Genomics. ENCODE project writes eulogy for junk DNA. Science. 2012;337:1159–61.

    Article  CAS  Google Scholar 

  33. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature. 2012;489:101–8.

    Article  CAS  Google Scholar 

  34. Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov. 2013;12:847–65.

    Article  CAS  Google Scholar 

  35. Schmitz U, Naderi-Meshkin H, Gupta SK, Wolkenhauer O, Vera J. The RNA world in the 21st century-a systems approach to finding non-coding keys to clinical questions. Brief Bioinform. 2016;17:380–92.

    Article  CAS  Google Scholar 

  36. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465:1033–8.

    Article  CAS  Google Scholar 

  37. Karreth FA, Reschke M, Ruocco A, Ng C, Chapuy B, Leopold V, et al. The BRAF pseudogene functions as a competitive endogenous RNA and induces lymphoma in vivo. Cell. 2015;161:319–32.

    Article  CAS  Google Scholar 

  38. Chen Y, Chen J, Liu Y, Li S, Huang P. Plasma miR-15b-5p, miR-338-5p, and miR-764 as biomarkers for Hepatocellular Carcinoma. Med Sci Monit. 2015;21:1864–71.

    Article  CAS  Google Scholar 

  39. Ellinger J, Muller SC, Dietrich D. Epigenetic biomarkers in the blood of patients with urological malignancies. Expert Rev Mol Diagn. 2015;15:505–16.

    Article  CAS  Google Scholar 

  40. Ma Y, Qi Y, Wang L, Zheng Z, Zhang Y, Zheng J. SIRT5-mediated SDHA desuccinylation promotes clear cell renal cell carcinoma tumorigenesis. Free Radic Biol Med. 2019;134:458–67.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of the People’s Republic of China (Nos. 81672521, 81974415, 81372739) and the Natural Science Foundation of Beijing (No. 7192021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfang Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Ma, Y., Peng, Z. et al. Long noncoding RNA PENG upregulates PDZK1 expression by sponging miR-15b to suppress clear cell renal cell carcinoma cell proliferation. Oncogene 39, 4404–4420 (2020). https://doi.org/10.1038/s41388-020-1297-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1297-1

This article is cited by

Search

Quick links