Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intratumor δ-catenin heterogeneity driven by genomic rearrangement dictates growth factor dependent prostate cancer progression

Abstract

Only a small number of genes are bona fide oncogenes and tumor suppressors such as Ras, Myc, β-catenin, p53, and APC. However, targeting these cancer drivers frequently fail to demonstrate sustained cancer remission. Tumor heterogeneity and evolution contribute to cancer resistance and pose challenges for cancer therapy due to differential genomic rearrangement and expression driving distinct tumor responses to treatments. Here we report that intratumor heterogeneity of Wnt/β-catenin modulator δ-catenin controls individual cell behavior to promote cancer. The differential intratumor subcellular localization of δ-catenin mirrors its compartmentalization in prostate cancer xenograft cultures as result of mutation-rendered δ-catenin truncations. Wild-type and δ-catenin mutants displayed distinct protein interactomes that highlight rewiring of signal networks. Localization specific δ-catenin mutants influenced p120ctn-dependent Rho GTPase phosphorylation and shifted cells towards differential bFGF-responsive growth and motility, a known signal to bypass androgen receptor dependence. Mutant δ-catenin promoted Myc-induced prostate tumorigenesis while increasing bFGF-p38 MAP kinase signaling, β-catenin-HIF-1α expression, and the nuclear size. Therefore, intratumor δ-catenin heterogeneity originated from genetic remodeling promotes prostate cancer expansion towards androgen independent signaling, supporting a neomorphism model paradigm for targeting tumor progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Differential δ-catenin distribution patterns in the same prostate tumor mass and prostate cancer (PCa) xenograft cell line.
Fig. 2: δ-Catenin genetic alterations and nonoverlapping interactomes involving distinct biological processes elicited by wild-type and mutant forms of δ-catenin in human PCa.
Fig. 3: Differential δ-catenin subcellular distribution corresponds to the different fate of E-cadherin/p120ctn and influences the interactions of p120ctn with RhoA, Cdc42, and Rac1.
Fig. 4: Differential δ-catenin distribution in PCa cells elicits different responses to bFGF stimulation.
Fig. 5: δ-Catenin promotes prostate tumor development in a mutation dependent manner.
Fig. 6: δ-Catenin mutations enhance β-catenin, Myc, and HIF-1α expression.
Fig. 7: Schematic showing the model of intratumor heterogeneity of δ-catenin in modulation of PCa cell dissemination.

Similar content being viewed by others

References

  1. Chaffer CL, San Juan BP, Lim E, Weinberg RA. EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 2016;35:645–54.

    Article  PubMed  Google Scholar 

  2. Zhang Y, Weinberg RA. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities. Front Med. 2018;12:361–73.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lu Q. δ-Catenin dysregulation in cancer: interactions with E-cadherin and beyond. J Pathol. 2010;222:119–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lu Q, Paredes M, Medina M, Zhou J, Cavallo R, Peifer M, et al. delta-catenin, an adhesive junction-associated protein which promotes cell scattering. J Cell Biol. 1999;144:519–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim K, Sirota A, Chen Yh Y, Jones SB, Dudek R, Lanford GW, et al. Dendrite-like process formation and cytoskeletal remodeling regulated by delta-catenin expression. Exp Cell Res. 2002;275:171–84.

    Article  CAS  PubMed  Google Scholar 

  6. Westbrook TF, Martin ES, Schlabach MR, Leng Y, Liang AC, Feng B, et al. A genetic screen for candidate tumor suppressors identifies REST. Cell. 2005;121:837–48.

    Article  CAS  PubMed  Google Scholar 

  7. Zeng Y, Abdallah A, Lu J-P, Wang T, Chen Y-H, Terrian DM, et al. delta-Catenin promotes prostate cancer cell growth and progression by altering cell cycle and survival gene profiles. Mol Cancer. 2009;8:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Fang Y, Li Z, Wang X, Zhang S. Expression and biological role of δ-catenin in human ovarian cancer. J Cancer Res Clin Oncol. 2012;138:1769–76.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang J, Chen Y-H, Lu Q. Pro-oncogenic and anti-oncogenic pathways: opportunities and challenges of cancer therapy. Future Oncol. 2010;6:587–603.

    Article  CAS  PubMed  Google Scholar 

  10. Nopparat J, Zhang J, Lu J-P, Chen Y-H, Zheng D, Neufer PD, et al. δ-Catenin, a Wnt/β-catenin modulator, reveals inducible mutagenesis promoting cancer cell survival adaptation and metabolic reprogramming. Oncogene. 2015;34:1542–52.

    Article  CAS  PubMed  Google Scholar 

  11. Takiar V, Ip CKM, Gao M, Mills GB, Cheung LWT. Neomorphic mutations create therapeutic challenges in cancer. Oncogene. 2017;36:1607–18.

    Article  CAS  PubMed  Google Scholar 

  12. Wolf A, Keil R, Götzl O, Mun A, Schwarze K, Lederer M, et al. The armadillo protein p0071 regulates Rho signalling during cytokinesis. Nat Cell Biol. 2006;8:1432–40.

    Article  CAS  PubMed  Google Scholar 

  13. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  14. Swanton C. Intratumor heterogeneity: evolution through space and time. Cancer Res. 2012;72:4875–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bluemn EG, Coleman IM, Lucas JM, Coleman RT, Hernandez-Lopez S, Tharakan R, et al. Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell. 2017;32:474–89.e6.

    Article  CAS  Google Scholar 

  16. Lu Q, Dobbs LJ, Gregory CW, Lanford GW, Revelo MP, Shappell S, et al. Increased expression of delta-catenin/neural plakophilin-related armadillo protein is associated with the down-regulation and redistribution of E-cadherin and p120ctn in human prostate cancer. Hum Pathol. 2005;36:1037–48.

    Article  CAS  PubMed  Google Scholar 

  17. Tai S, Sun Y, Squires JM, Zhang H, Oh WK, Liang C-Z, et al. PC3 is a cell line characteristic of prostatic small cell carcinoma. Prostate. 2011;71:1668–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zheng J-Y, Yu D, Foroohar M, Ko E, Chan J, Kim N, et al. Regulation of the expression of the prostate-specific antigen by claudin-7. J Membr Biol. 2003;194:187–97.

    Article  CAS  PubMed  Google Scholar 

  19. Suhovskih AV, Kashuba VI, Klein G, Grigorieva EV. Prostate cancer cells specifically reorganize epithelial cell-fibroblast communication through proteoglycan and junction pathways. Cell Adh Migr. 2016;11:39–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Olson MF. Rho GTPases, their post-translational modifications, disease-associated mutations and pharmacological inhibitors. Small GTPases. 2016;9:203–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Anastasiadis PZ, Reynolds AB. Regulation of Rho GTPases by p120-catenin. Curr Opin Cell Biol. 2001;13:604–10.

    Article  CAS  PubMed  Google Scholar 

  22. Yanagisawa M, Huveldt D, Kreinest P, Lohse CM, Cheville JC, Parker AS, et al. A p120 catenin isoform switch affects Rho activity, induces tumor cell invasion, and predicts metastatic disease. J Biol Chem. 2008;283:18344–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang J, Lin Y, Zhang Y, Lan Y, Lin C, Moon AM, et al. Frs2alpha-deficiency in cardiac progenitors disrupts a subset of FGF signals required for outflow tract morphogenesis. Development. 2008;135:3611–22.

    Article  CAS  PubMed  Google Scholar 

  24. Ellwood-Yen K, Graeber TG, Wongvipat J, Iruela-Arispe ML, Zhang J, Matusik R, et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell. 2003;4:223–38.

    Article  CAS  PubMed  Google Scholar 

  25. Israely I, Costa RM, Xie CW, Silva AJ, Kosik KS, Liu X. Deletion of the neuron-specific protein delta-catenin leads to severe cognitive and synaptic dysfunction. Curr Biol. 2004;14:1657–63.

    Article  CAS  PubMed  Google Scholar 

  26. Kosik KS, Donahue CP, Israely I, Liu X, Ochiishi T. Delta-catenin at the synaptic-adherens junction. Trends Cell Biol. 2005;15:172–8.

    Article  CAS  PubMed  Google Scholar 

  27. McCrea PD, Park J-I. Developmental functions of the P120-catenin sub-family. Biochim Biophys Acta. 2007;1773:17–33.

    Article  CAS  PubMed  Google Scholar 

  28. Paffenholz R, Franke WW. Identification and localization of a neurally expressed member of the plakoglobin/armadillo multigene family. Differentiation. 1997;61:293–304.

    Article  CAS  PubMed  Google Scholar 

  29. Kim H, He Y, Yang I, Zeng Y, Kim Y, Seo Y-W, et al. δ-Catenin promotes E-cadherin processing and activates β-catenin-mediated signaling: implications on human prostate cancer progression. Biochim Biophys Acta. 2012;1822:509–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Patiar S, Harris AL. Role of hypoxia-inducible factor-1alpha as a cancer therapy target. Endocr Relat Cancer. 2006;13:S61–75.

    Article  CAS  PubMed  Google Scholar 

  31. Poon E, Harris AL, Ashcroft M. Targeting the hypoxia-inducible factor (HIF) pathway in cancer. Expert Rev Mol Med. 2009;11:e26.

    Article  PubMed  Google Scholar 

  32. Powis G, Kirkpatrick L. Hypoxia inducible factor-1alpha as a cancer drug target. Mol Cancer Ther. 2004;3:647–54.

    CAS  PubMed  Google Scholar 

  33. Bensinger SJ, Christofk HR. New aspects of the Warburg effect in cancer cell biology. Semin Cell Dev Biol. 2012;23:352–61.

    Article  CAS  PubMed  Google Scholar 

  34. Dang CV, Kim J, Gao P, Yustein J. The interplay between MYC and HIF in cancer. Nat Rev Cancer. 2008;8:51–56.

    Article  CAS  PubMed  Google Scholar 

  35. Podar K, Anderson KC. A therapeutic role for targeting c-Myc/Hif-1-dependent signaling pathways. Cell Cycle. 2010;9:1722–8.

    Article  CAS  PubMed  Google Scholar 

  36. Iwata T, Schultz D, Hicks J, Hubbard GK, Mutton LN, Lotan TL, et al. MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells. PLoS ONE. 2010;5:e9427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kim H, Han J-R, Park J, Oh M, James SE, Chang S, et al. Delta-catenin-induced dendritic morphogenesis. An essential role of p190RhoGEF interaction through Akt1-mediated phosphorylation. J Biol Chem. 2008;283:977–87.

    Article  CAS  PubMed  Google Scholar 

  38. Kim H, Oh M, Lu Q, Kim K. E-Cadherin negatively modulates delta-catenin-induced morphological changes and RhoA activity reduction by competing with p190RhoGEF for delta-catenin. Biochem Biophys Res Commun. 2008;377:636–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dohn MR, Brown MV, Reynolds AB. An essential role for p120-catenin in Src- and Rac1-mediated anchorage-independent cell growth. J Cell Biol. 2009;184:437–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu Y, Li Q-C, Miao Y, Xu H-T, Dai S-D, Wei Q, et al. Ablation of p120-catenin enhances invasion and metastasis of human lung cancer cells. Cancer Sci. 2009;100:441–8.

    Article  CAS  PubMed  Google Scholar 

  41. Lu Q, Aguilar BJ, Li M, Jiang Y, Chen Y-H. Genetic alterations of δ-catenin/NPRAP/Neurojungin (CTNND2): functional implications in complex human diseases. Hum Genet. 2016;135:1107–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. DeBusk LM, Boelte K, Min Y, Lin PC. Heterozygous deficiency of delta-catenin impairs pathological angiogenesis. J Exp Med. 2010;207:77–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huang F, Chen J, Wang Z, Lan R, Fu L, Zhang L. δ-Catenin promotes tumorigenesis and metastasis of lung adenocarcinoma. Oncol Rep. 2018;39:809–17.

    CAS  PubMed  Google Scholar 

  44. Viswanathan SR, Nogueira MF, Buss CG, Krill-Burger JM, Wawer MJ, Malolepsza E, et al. Genome-scale analysis identifies paralog lethality as a vulnerability of chromosome 1p loss in cancer. Nat Genet. 2018;50:937–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu Y-M, Cieślik M, Lonigro RJ, Vats P, Reimers MA, Cao X, et al. Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate. Cancer Cell. 2018;173:1770–82.e14.

    Google Scholar 

  46. Ip CKM, Ng PKS, Jeong KJ, Shao SH, Ju Z, Leonard PG, et al. Neomorphic PDGFRA extracellular domain driver mutations are resistant to PDGFRA targeted therapies. Nat Commun. 2018;9:4583.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, et al. Comprehensive characterization of cancer driver genes and mutations. Cell. 2018;173:371–85.e18.

    Article  CAS  Google Scholar 

  48. Zhang G, Neubert TA. Use of detergents to increase selectivity of immunoprecipitation of tyrosine phosphorylated peptides prior to identification by MALDI quadrupole-TOF MS. Proteomics. 2006;6:571–8.

    Article  CAS  PubMed  Google Scholar 

  49. Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21:3448–9.

    Article  CAS  PubMed  Google Scholar 

  50. Jones SB, Lu HY, Lu Q. Abl tyrosine kinase promotes dendrogenesis by inducing actin cytoskeletal rearrangements in cooperation with Rho family small GTPases in hippocampal neurons. J Neurosci. 2004;24:8510–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jones SB, Lanford GW, Chen Y-H, Morabito M, Kim K, Lu Q. Glutamate-induced delta-catenin redistribution and dissociation from postsynaptic receptor complexes. Neuroscience. 2002;115:1009–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank George W. Lanford and William Guiler for technical assistance. This work was supported in part by grants from USA National Cancer Institute CA111891 (QL), CA165202 (QL), the Harriet and John Wooten Foundation for Alzheimer’s and Neurodegenerative Diseases Research (QL), and Chinese Beijing Natural Science Foundation 7172068 (YGJ). This research is based in part upon work conducted using the UNC Proteomics Core Facility, which is supported in part by USA National Cancer Institute P30 CA016086 Cancer Center Core Support Grant to the UNC Lineberger Comprehensive Cancer Center.

Author information

Authors and Affiliations

Authors

Contributions

QL conceived the project. QL, YGJ, YHC, JD, and XA co-designed the collaboration and experiments. MCL, JN, JZ, BJA, CB, YHC, YL, YGJ, and QL performed experiments and data analyses. All authors contributed to the discussion section and approved the paper for submission.

Corresponding author

Correspondence to Qun Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Nopparat, J., Aguilar, B.J. et al. Intratumor δ-catenin heterogeneity driven by genomic rearrangement dictates growth factor dependent prostate cancer progression. Oncogene 39, 4358–4374 (2020). https://doi.org/10.1038/s41388-020-1281-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1281-9

This article is cited by

Search

Quick links