Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

PDE4 subtypes in cancer

Abstract

Cyclic nucleotide phosphodiesterases (PDE) break down cyclic nucleotides such as cAMP and cGMP, reducing the signaling of these important intracellular second messengers. Several unique families of phosphodiesterases exist, and certain families are clinically important modulators of vasodilation. In the current work, we have summarized the body of literature that describes an emerging role for the PDE4 subfamily of phosphodiesterases in malignancy. We have systematically investigated PDE4A, PDE4B, PDE4C, and PDE4D isoforms and found evidence associating them with several cancer types including hematologic malignancies and lung cancers, among others. In this review, we compare the evidence examining the functional role of each PDE4 subtype across malignancies, looking for common signaling themes, signaling pathways, and establishing the case for PDE4 subtypes as a potential therapeutic target for cancer treatment.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: A model for the role of PDE4 in the promotion of angiogenesis.
Fig. 2: Literature screening process.

References

  1. 1.

    Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov. 2014;13:290.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Nanayakkara S, Mak V, Crannitch K, Byrne M, Kaye DM. Extended release oral milrinone, CRD-102, for advanced heart failure. Am J Cardiol. 2018;122:1017–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Das A, Durrant D, Salloum FN, Xi L, Kukreja RC. PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer. Pharmacol Ther. 2015;147:12–21.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Zebda R, Paller AS. Phosphodiesterase 4 inhibitors. J Am Acad Dermatol. 2018;78:S43–52.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Li H, Zuo J, Tang W. Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Front Pharmacol. 2018;9. https://doi.org/10.3389/fphar.2018.01048.

  6. 6.

    Burgin AB, Magnusson OT, Singh J, Witte P, Staker BL, Bjornsson JM, et al. Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety. Nat Biotechnol. 2010;28:63–70.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Zhang C, Xu Y, Zhang H-T, Gurney ME, O’Donnell JM. Comparison of the pharmacological profiles of selective PDE4B and PDE4D inhibitors in the central nervous system. Sci Rep. 2017;7:40115.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Hagen TJ, Mo X, Burgin AB, Fox D, Zhang Z, Gurney ME. Discovery of triazines as selective PDE4B versus PDE4D inhibitors. Bioorg Med Chem Lett. 2014;24:4031–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Fox D, Burgin AB, Gurney ME. Structural basis for the design of selective phosphodiesterase 4B inhibitors. Cell Signal. 2014;26:657–63.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Bolger GB, Bizzi MF, Pinheiro SV, Trivellin G, Smoot L, Accavitti M-A, et al. cAMP-specific PDE4 phosphodiesterases and AIP in the pathogenesis of pituitary tumors. Endocr Relat Cancer. 2016;23:419–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Goldhoff P, Warrington NM, Limbrick DDJ, Hope A, Woerner BM, Jackson E, et al. Targeted inhibition of cyclic AMP phosphodiesterase-4 promotes brain tumor regression. Clin Cancer Res. 2008;14:7717–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Warrington NM, Gianino SM, Jackson E, Goldhoff P, Garbow JR, Piwnica-Worms D, et al. Cyclic AMP suppression is sufficient to induce gliomagenesis in a mouse model of neurofibromatosis-1. Cancer Res. 2010;70:5717–27.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Moon E-Y, Lee G-H, Lee M-S, Kim H-M, Lee J-W. Phosphodiesterase inhibitors control A172 human glioblastoma cell death through cAMP-mediated activation of protein kinase A and Epac1/Rap1 pathways. Life Sci. 2012;90:373–80.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Toledo RA, Mendonca BB, Fragoso MCBV, Soares IC, Almeida MQ, Moraes MB, et al. Isolated familial somatotropinoma: 11q13-loh and gene/protein expression analysis suggests a possible involvement of aip also in non-pituitary tumorigenesis. Clinical. 2010;65:407–15.

    Article  Google Scholar 

  15. 15.

    Cokic VP, Mossuz P, Han J, Socoro N, Beleslin-Cokic BB, Mitrovic O, et al. Microarray and proteomic analyses of myeloproliferative neoplasms with a highlight on the mTOR signaling pathway. PLoS ONE. 2015;10:e0135463.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. 16.

    Sarfati M, Mateo V, Baudet S, Rubio M, Fernandez C, Davi F, et al. Sildenafil and vardenafil, types 5 and 6 phosphodiesterase inhibitors, induce caspase-dependent apoptosis of B-chronic lymphocytic leukemia cells. Blood. 2003;101:265–9.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Kim DH, Lerner A. Type 4 cyclic adenosine monophosphate phosphodiesterase as a therapeutic target in chronic lymphocytic leukemia. Blood. 1998;92:2484–94.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Chamseddine AN, Cabrero M, Wei Y, Ganan-Gomez I, Colla S, Takahashi K, et al. PDE4 differential expression is a potential prognostic factor and therapeutic target in patients with myelodysplastic syndrome and chronic myelomonocytic leukemia. Clin Lymphoma Myeloma Leuk. 2016;16:S67–73.

    PubMed  Article  Google Scholar 

  19. 19.

    Jiang X, Paskind M, Weltzien R, Epstein PM. Expression and regulation of mRNA for distinct isoforms of cAMP-specific PDE-4 in mitogen-stimulated and leukemic human lymphocytes. Cell Biochem Biophys. 1998;28:135–60.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Dong H, Zitt C, Auriga C, Hatzelmann A, Epstein PM. Inhibition of PDE3, PDE4 and PDE7 potentiates glucocorticoid-induced apoptosis and overcomes glucocorticoid resistance in CEM T leukemic cells. Biochem Pharm. 2010;79:321–9.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Fernandez-Araujo A, Alfonso A, Vieytes MR, Botana LM. Yessotoxin activates cell death pathways independent of Protein Kinase C in K-562 human leukemic cell line. Toxicol Vitr. 2015;29:1545–54.

    CAS  Article  Google Scholar 

  22. 22.

    Kolosionek E, Savai R, Ghofrani HA, Weissmann N, Guenther A, Grimminger F, et al. Expression and activity of phosphodiesterase isoforms during epithelial mesenchymal transition: the role of phosphodiesterase 4. Mol Biol Cell. 2009;20:4751–65.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Pullamsetti SS, Banat GA, Schmall A, Szibor M, Pomagruk D, Hanze J, et al. Phosphodiesterase-4 promotes proliferation and angiogenesis of lung cancer by crosstalk with HIF. Oncogene. 2013;32:1121–34.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Peng Y, Li Y, Tian Y, Ao G. PDE4a predicts poor prognosis and promotes metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma. J Cancer. 2018;9:2389–96.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. 25.

    Knobloch TJ, Ryan NM, Bruschweiler-Li L, Wang C, Bernier MC, Somogyi A et al. Metabolic regulation of glycolysis and AMP activated protein kinase pathways during black raspberry-mediated oral cancer chemoprevention. Metabolites. 2019;9. https://doi.org/10.3390/metabo9070140.

  26. 26.

    Wittliff JL, Sereff SB, Daniels MW. Expression of genes for methylxanthine pathway-associated enzymes accompanied by sex steroid receptor status impacts breast carcinoma progression. Horm Cancer. 2017;8:298–313.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Smith PG, Wang F, Wilkinson KN, Savage KJ, Klein U, Neuberg DS, et al. The phosphodiesterase PDE4B limits cAMP-associated PI3K/AKT-dependent apoptosis in diffuse large B-cell lymphoma. Blood. 2005;105:308–16.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Suhasini AN, Wang L, Holder KN, Lin A-P, Bhatnagar H, Kim S-W, et al. A phosphodiesterase 4B-dependent interplay between tumor cells and the microenvironment regulates angiogenesis in B-cell lymphoma. Leukemia. 2016;30:617–26.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Rickles RJ, Pierce LT, Giordano TP3rd, Tam WF, McMillin DW, Delmore J, et al. Adenosine A2A receptor agonists and PDE inhibitors: a synergistic multitarget mechanism discovered through systematic combination screening in B-cell malignancies. Blood. 2010;116:593–602.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Nagy ZS, Ross JA, Rodriguez G, Balint BL, Szeles L, Nagy L, et al. Genome wide mapping reveals PDE4B as an IL-2 induced STAT5 target gene in activated human PBMCs and lymphoid cancer cells. PLoS ONE. 2013;8:e57326.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Liu S, Liu Y, Zhang Q, Wu J, Liang J, Yu S, et al. Systematic identification of regulatory variants associated with cancer risk. Genome Biol. 2017;18:194.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. 32.

    Tiwari S, Dong H, Kim EJ, Weintraub L, Epstein PM, Lerner A. Type 4 cAMP phosphodiesterase (PDE4) inhibitors augment glucocorticoid-mediated apoptosis in B cell chronic lymphocytic leukemia (B-CLL) in the absence of exogenous adenylyl cyclase stimulation. Biochem Pharm. 2005;69:473–83.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Kim S-W, Rai D, Aguiar RCT. Gene set enrichment analysis unveils the mechanism for the phosphodiesterase 4B control of glucocorticoid response in B-cell lymphoma. Clin Cancer Res. 2011;17:6723–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Kim J, Jeong D, Nam J, Aung TN, Gim J-A, Park KU, et al. MicroRNA-124 regulates glucocorticoid sensitivity by targeting phosphodiesterase 4B in diffuse large B cell lymphoma. Gene. 2015;558:173–80.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Yang JJ, Cheng C, Devidas M, Cao X, Campana D, Yang W, et al. Genome-wide association study identifies germline polymorphisms associated with relapse of childhood acute lymphoblastic leukemia. Blood. 2012;120:4197–204.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Kim S-W, Rai D, McKeller MR, Aguiar RCT. Rational combined targeting of phosphodiesterase 4B and SYK in DLBCL. Blood. 2009;113:6153–60.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Tsunoda T, Ota T, Fujimoto T, Doi K, Tanaka Y, Yoshida Y, et al. Inhibition of phosphodiesterase-4 (PDE4) activity triggers luminal apoptosis and AKT dephosphorylation in a 3-D colonic-crypt model. Mol Cancer. 2012;11:46.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Mahmood B, Damm MMB, Jensen TSR, Backe MB, Dahllof MS, Poulsen SS, et al. Phosphodiesterases in non-neoplastic appearing colonic mucosa from patients with colorectal neoplasia. BMC Cancer. 2016;16:938.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. 39.

    Pleiman JK, Irving AA, Wang Z, Toraason E, Clipson L, Dove WF et al. The conserved protective cyclic AMP-phosphodiesterase function PDE4B is expressed in the adenoma and adjacent normal colonic epithelium of mammals and silenced in colorectal cancer. PLoS Genet. 2018;14. https://doi.org/10.1371/journal.pgen.1007611.

  40. 40.

    Nishi K, Luo H, Ishikura S, Doi K, Iwaihara Y, Wills L, et al. Apremilast induces apoptosis of human colorectal cancer cells with mutant KRAS. Anticancer Res. 2017;37:3833–9.

    CAS  PubMed  Google Scholar 

  41. 41.

    Lapa GB, Tsunoda T, Shirasawa S, Baryshnikova MA, Evseev GG, Afanasyeva DA, et al. Synthesis of new congeners of 1-methyl-3-aminoisoquinolines, evaluation of their cytotoxic activity, in silico and in vitro study of their molecular targets as PDE4B. Chem Biol Drug Des. 2016;87:575–82.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Mareddy J, Nallapati SB, Anireddy J, Devi YP, Mangamoori LN, Kapavarapu R, et al. Synthesis and biological evaluation of nimesulide based new class of triazole derivatives as potential PDE4B inhibitors against cancer cells. Bioorg Med Chem Lett. 2013;23:6721–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Kim DU, Kwak B, Kim SW. Phosphodiesterase 4B is an effective therapeutic target in colorectal cancer. Biochem Biophys Res Commun. 2019;508:825–31.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Shah MS, Schwartz SL, Zhao C, Davidson LA, Zhou B, Lupton JR, et al. Integrated microRNA and mRNA expression profiling in a rat colon carcinogenesis model: effect of a chemo-protective diet. Physiol Genomics. 2011;43:640–54.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    He R-Q, Li X-J, Liang L, Xie Y, Luo D-Z, Ma J, et al. The suppressive role of miR-542-5p in NSCLC: the evidence from clinical data and in vivo validation using a chick chorioallantoic membrane model. BMC Cancer. 2017;17:655.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46.

    Narita M, Murata T, Shimizu K, Nakagawa T, Sugiyama T, Inui M, et al. A role for cyclic nucleotide phosphodiesterase 4 in regulation of the growth of human malignant melanoma cells. Oncol Rep. 2007;17:1133–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Holloway DT, Kon M, DeLisi C. In silico regulatory analysis for exploring human disease progression. Biol Direct. 2008;3:24.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. 48.

    Dong P, Xiong Y, Yue J, Xu D, Ihira K, Konno Y, et al. Long noncoding RNA NEAT1 drives aggressive endometrial cancer progression via miR-361-regulated networks involving STAT3 and tumor microenvironment-related genes. J Exp Clin Cancer Res. 2019;38. https://doi.org/10.1186/s13046-019-1306-9.

  49. 49.

    Praveena KSS, Durgadas S, Suresh Babu N, Akkenapally S, Ganesh Kumar C, Deora GS, et al. Synthesis of 2,2,4-trimethyl-1,2-dihydroquinolinyl substituted 1,2,3-triazole derivatives: their evaluation as potential PDE 4B inhibitors possessing cytotoxic properties against cancer cells. Bioorg Chem. 2014;53:8–14.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Babu PV, Mukherjee S, Deora GS, Chennubhotla KS, Medisetti R, Yellanki S, et al. Ligand/PTC-free intramolecular Heck reaction: synthesis of pyrroloquinoxalines and their evaluation against PDE4/luciferase/oral cancer cell growth in vitro and zebrafish in vivo. Org Biomol Chem. 2013;11:6680–5.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Kashiwagi E, Shiota M, Yokomizo A, Itsumi M, Inokuchi J, Uchiumi T, et al. Downregulation of phosphodiesterase 4B (PDE4B) activates protein kinase A and contributes to the progression of prostate cancer. Prostate. 2012;72:741–51.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Obernolte R, Ratzliff J, Baecker PA, Daniels DV, Zuppan P, Jarnagin K, et al. Multiple splice variants of phosphodiesterase PDE4C cloned from human lung and testis. Biochim Biophys Acta. 1997;1353:287–97.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Bao Z, Feng Y, Wang H, Zhang C, Sun L, Yan Z, et al. Integrated analysis using methylation and gene expression microarrays reveals PDE4C as a prognostic biomarker in human glioma. Oncol Rep. 2014;32:250–60.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Persani L, Lania A, Alberti L, Romoli R, Mantovani G, Filetti S, et al. Induction of specific phosphodiesterase isoforms by constitutive activation of the cAMP pathway in autonomous thyroid adenomas. J Clin Endocrinol Metab. 2000;85:2872–8.

    CAS  PubMed  Google Scholar 

  55. 55.

    Garritano S, Inga A, Gemignani F, Landi S. More targets, more pathways and more clues for mutant p53. Oncogenesis. 2013;2:e54.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Zhang L, Murray F, Zahno A, Kanter JR, Chou D, Suda R, et al. Cyclic nucleotide phosphodiesterase profiling reveals increased expression of phosphodiesterase 7B in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2008;105:19532–7.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    He N, Kim N, Song M, Park C, Kim S, Park EY, et al. Integrated analysis of transcriptomes of cancer cell lines and patient samples reveals STK11/LKB1-driven regulation of cAMP phosphodiesterase-4D. Mol Cancer Ther. 2014;13:2463–73.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Karachaliou N, Codony-Servat J, Teixidó C, Pilotto S, Drozdowskyj A, Codony-Servat C, et al. BIM and mTOR expression levels predict outcome to erlotinib in EGFR-mutant non-small-cell lung cancer. Sci Rep. 2015;5:17499.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Baty F, Klingbiel D, Zappa F, Brutsche M. High-throughput alternative splicing detection using dually constrained correspondence analysis (DCCA). J Biomed Inf. 2015;58:175–85.

    Article  Google Scholar 

  60. 60.

    Henderson DJP, Houslay MD, Bangma CH, Hoffmann R. Creating a potential diagnostic for prostate cancer risk stratification (InformMDxTM) by translating novel scientific discoveries concerning cAMP degrading phosphodiesterase-4D7 (PDE4D7). Clin Sci. 2019;133:269–86.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Henderson DJP, Byrne A, Dulla K, Jenster G, Hoffmann R, Baillie GS, et al. The cAMP phosphodiesterase-4D7 (PDE4D7) is downregulated in androgen-independent prostate cancer cells and mediates proliferation by compartmentalising cAMP at the plasma membrane of VCaP prostate cancer cells. Br J Cancer. 2014;110:1278–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Bottcher R, Dulla K, van Strijp D, Dits N, Verhoef EI, Baillie GS, et al. Human PDE4D isoform composition is deregulated in primary prostate cancer and indicative for disease progression and development of distant metastases. Oncotarget. 2016;7:70669–84.

    PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Van Strijp D, De Witz C, Heitkötter B, Huss S, Bögemann M, Baillie GS et al. The association of the long prostate cancer expressed PDE4D transcripts to poor patient outcome depends on the tumour’s TMPRSS2-ERG fusion status. Prostate Cancer. 2019;2019. https://doi.org/10.1155/2019/8107807.

  64. 64.

    Rahrmann EP, Collier LS, Knutson TP, Doyal ME, Kuslak SL, Green LE, et al. Identification of PDE4D as a proliferation promoting factor in prostate cancer using a Sleeping Beauty transposon-based somatic mutagenesis screen. Cancer Res. 2009;69:4388–97.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Powers GL, Hammer KDP, Domenech M, Frantskevich K, Malinowski RL, Bushman W, et al. Phosphodiesterase 4D inhibitors limit prostate cancer growth potential. Mol Cancer Res. 2015;13:149–60.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Geybels MS, Alumkal JJ, Luedeke M, Rinckleb A, Zhao S, Shui IM, et al. Epigenomic profiling of prostate cancer identifies differentially methylated genes in TMPRSS2:ERG fusion-positive versus fusion-negative tumors. Clin Epigenetics. 2015;7:128.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  67. 67.

    Delyon J, Servy A, Laugier F, Andre J, Ortonne N, Battistella M, et al. PDE4D promotes FAK-mediated cell invasion in BRAF-mutated melanoma. Oncogene. 2017;36:3252–62.

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Bogunovic D, O’Neill DW, Belitskaya-Levy I, Vacic V, Yu Y-L, Adams S, et al. Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival. Proc Natl Acad Sci USA. 2009;106:20429–34.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Khaled M, Levy C, Fisher DE. Control of melanocyte differentiation by a MITF-PDE4D3 homeostatic circuit. Genes Dev. 2010;24:2276–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Xu T, Wu S, Yuan Y, Yan G, Xiao D. Knockdown of phosphodiesterase 4D inhibits nasopharyngeal carcinoma proliferation via the epidermal growth factor receptor signaling pathway. Oncol Lett. 2014;8:2110–6.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. 71.

    Gu J, Ajani JA, Hawk ET, Ye Y, Lee JH, Bhutani MS, et al. Genome-wide catalogue of chromosomal aberrations in barrett’s esophagus and esophageal adenocarcinoma: a high-density single nucleotide polymorphism array analysis. Cancer Prev Res. 2010;3:1176–86.

    CAS  Article  Google Scholar 

  72. 72.

    Nancarrow DJ, Handoko HY, Smithers BM, Gotley DC, Drew PA, Watson DI, et al. Genome-wide copy number analysis in esophageal adenocarcinoma using high-density single-nucleotide polymorphism arrays. Cancer Res. 2008;68:4163–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Bye H, Prescott NJ, Lewis CM, Matejcic M, Moodley L, Robertson B, et al. Distinct genetic association at the PLCE1 locus with oesophageal squamous cell carcinoma in the South African population. Carcinogenesis. 2012;33:2155–61.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Floor SL, Tresallet C, Hebrant A, Desbuleux A, Libert F, Hoang C, et al. microRNA expression in autonomous thyroid adenomas: Correlation with mRNA regulation. Mol Cell Endocrinol. 2015;411:1–10.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Ge X, Milenkovic L, Suyama K, Hartl T, Purzner T, Winans A et al. Phosphodiesterase 4D acts downstream of Neuropilin to control Hedgehog signal transduction and the growth of medulloblastoma. Elife. 2015;4. https://doi.org/10.7554/eLife.07068.

  76. 76.

    Kang T-W, Choi SW, Yang S-R, Shin T-H, Kim H-S, Yu K-R, et al. Growth arrest and forced differentiation of human primary glioblastoma multiforme by a novel small molecule. Sci Rep. 2014;4:5546.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Milinkovic V, Bankovic J, Rakic M, Stankovic T, Skender-Gazibara M, Ruzdijic S, et al. Identification of novel genetic alterations in samples of malignant glioma patients. PLoS ONE. 2013;8:e82108.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  78. 78.

    Cao B, Wang K, Liao J-M, Zhou X, Liao P, Zeng SX et al. Inactivation of oncogenic cAMP-specific phosphodiesterase 4D by miR-139-5p in response to p53 activation. Elife. 2016;5. https://doi.org/10.7554/eLife.15978.

  79. 79.

    McEwan DG, Brunton VG, Baillie GS, Leslie NR, Houslay MD, Frame MC. Chemoresistant KM12C colon cancer cells are addicted to low cyclic AMP levels in a phosphodiesterase 4-regulated compartment via effects on phosphoinositide 3-kinase. Cancer Res. 2007;67:5248–57.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80.

    Kim DU, Nam J, Cha MD, Kim SW. Inhibition of phosphodiesterase 4D decreases the malignant properties of DLD-1 colorectal cancer cells by repressing the AKT/mTOR/Myc signaling pathway. Oncol Lett. 2019;17:3589–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Chen L, Gao H, Liang J, Qiao J, Duan J, Shi H, et al. miR-203a-3p promotes colorectal cancer proliferation and migration by targeting PDE4D. Am J Cancer Res. 2018;8:2387–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Araújo T, Khayat A, Quintana L, Calcagno D, Mourão R, Modesto A, et al. Piwi like RNA-mediated gene silencing 1 gene as a possible major player in gastric cancer. World J Gastroenterol. 2018;24:5338–50.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  83. 83.

    Miklos W, Heffeter P, Pirker C, Hager S, Kowol CR, van Schoonhoven S, et al. Loss of phosphodiesterase 4D mediates acquired triapine resistance via Epac-Rap1-Integrin signaling. Oncotarget. 2016;7:84556–74.

    PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Peng Q-P, Du D-B, Ming Q, Hu F, Wu Z-B, Qiu S. MicroRNA 494 increases chemosensitivity to doxorubicin in gastric cancer cells by targeting phosphodiesterases 4D. Cell Mol Biol. 2018;64:62–66.

    PubMed  Article  Google Scholar 

  85. 85.

    Haddad SA, Ruiz-Narvaez EA, Haiman CA, Sucheston-Campbell LE, Bensen JT, Zhu Q, et al. An exome-wide analysis of low frequency and rare variants in relation to risk of breast cancer in African American Women: the AMBER Consortium. Carcinogenesis. 2016;37:870–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Natrajan R, Mackay A, Lambros MB, Weigelt B, Wilkerson PM, Manie E, et al. A whole-genome massively parallel sequencing analysis of BRCA1 mutant oestrogen receptor-negative and -positive breast cancers. J Pathol. 2012;227:29–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Bodelon C, Oh H, Chatterjee N, Garcia-Closas M, Palakal M, Sherman ME, et al. Association between breast cancer genetic susceptibility variants and terminal duct lobular unit involution of the breast. Int J Cancer. 2017;140:825–32.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Agostini A, Brunetti M, Davidson B, Göran Tropé C, Heim S, Panagopoulos I, et al. Identification of novel cyclin gene fusion transcripts in endometrioid ovarian carcinomas. Int J Cancer. 2018;143:1379–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Wang Y, Fang T, Huang L, Wang H, Zhang L, Wang Z, et al. Neutrophils infiltrating pancreatic ductal adenocarcinoma indicate higher malignancy and worse prognosis. Biochem Biophys Res Commun. 2018;501:313–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Mishra RR, Belder N, Ansari SA, Kayhan M, Bal H, Raza U, et al. Reactivation of cAMP pathway by PDE4D inhibition represents a novel druggable axis for overcoming tamoxifen resistance in er-positive breast cancer. Clin Cancer Res. 2018;24:1987–2001.

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Qiang Z, Zhou ZY, Peng T, Jiang PZ, Shi N, Njoya EM et al. Inhibition of TPL2 by interferon-α suppresses bladder cancer through activation of PDE4D. J Exp Clin Cancer Res. 2018;37. https://doi.org/10.1186/s13046-018-0971-4.

  92. 92.

    Kelly K, Mejia A, Suhasini AN, Lin A-P, Kuhn J, Karnad AB, et al. Safety and pharmacodynamics of the PDE4 inhibitor roflumilast in advanced B-cell malignancies. Clin Cancer Res. 2017;23:1186–92.

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Ramezani S, Vousooghi N, Ramezani Kapourchali F, Yousefzadeh-Chabok S, Reihanian Z, Alizadeh AM, et al. Rolipram optimizes therapeutic effect of bevacizumab by enhancing proapoptotic, antiproliferative signals in a glioblastoma heterotopic model. Life Sci. 2019;239. https://doi.org/10.1016/j.lfs.2019.116880.

  94. 94.

    Ramezani S, Vousooghi N, Kapourchali FR, Hadjighasem M, Hayat P, Amini N, et al. Rolipram potentiates bevacizumab-induced cell death in human glioblastoma stem-like cells. Life Sci. 2017;173:11–19.

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Cooney JD, Lin AP, Jiang D, Wang L, Suhasini AN, Myers J, et al. Synergistic targeting of the regulatory and catalytic subunits of pi3kd in mature b-cell malignancies. Clin Cancer Res. 2018;24:1103–13.

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Sakkas LI, Mavropoulos A, Bogdanos DP. Phosphodiesterase 4 inhibitors in immune-mediated diseases: mode of action, clinical applications, current and future perspectives. Curr Med Chem. 2017;24. https://doi.org/10.2174/0929867324666170530093902.

  97. 97.

    Naganuma K, Omura A, Maekawara N, Saitoh M, Ohkawa N, Kubota T, et al. Discovery of selective PDE4B inhibitors. Bioorg Med Chem Lett. 2009;19:3174–6.

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Gurney ME, Nugent RA, Mo X, Sindac JA, Hagen TJ, Fox D, et al. Design and synthesis of selective phosphodiesterase 4D (PDE4D) Allosteric inhibitors for the treatment of fragile X syndrome and other brain disorders. J Med Chem. 2019;62:4884–901.

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Wang H, Peng M-S, Chen Y, Geng J, Robinson H, Houslay MD, et al. Structures of the four subfamilies of phosphodiesterase-4 provide insight into the selectivity of their inhibitors. Biochem J. 2007;408:193–201.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Houslay MD. Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown. Trends Biochem Sci. 2010;35:91–100.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kelly M. Quesnelle.

Ethics declarations

Conflict of interest

MG is an employee of Tetra Discovery Partners, Inc. that has a financial interest in the discovery and development of PDE4B and PDE4D allosteric inhibitors for the treatment of Fragile X Syndrome, Alzheimer’s disease, and other CNS disorders.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hsien Lai, S., Zervoudakis, G., Chou, J. et al. PDE4 subtypes in cancer. Oncogene 39, 3791–3802 (2020). https://doi.org/10.1038/s41388-020-1258-8

Download citation

Further reading

Search

Quick links