Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The CUL4B-miR-372/373-PIK3CA-AKT axis regulates metastasis in bladder cancer


CUL4B, which acts as a scaffold protein in CUL4B-RING ubiquitin ligase (CRL4B) complexes, participates in a variety of biological processes. Previous studies have shown that CUL4B is often overexpressed and exhibits oncogenic activities in a variety of solid tumors. However, the roles and the underlying mechanisms of CUL4B in bladder cancer (BC) were poorly understood. Here, we showed that CUL4B levels were overexpressed and positively correlated with the malignancy of BC, and CUL4B could confer BC cells increased motility, invasiveness, stemness, and chemoresistance. The PIK3CA/AKT pathway was identified as a critical downstream mediator of CUL4B-driven oncogenicity in BC cells. Furthermore, we demonstrated that CRL4B epigenetically repressed the transcription of miR-372/373, via catalyzing monoubiquitination of H2AK119 at the gene cluster encoding miR-372/373, leading to upregulation of PIK3CA and activation of AKT. Our findings thus establish a critical role for the CUL4B-miR-372/373-PIK3CA/AKT axis in the pathogenesis of BC and have important prognostic and therapeutic implications in BC.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: CUL4B is overexpressed and positively correlated with malignant behavior in BC.
Fig. 2: CUL4B promotes proliferation of BC cells and tumor growth.
Fig. 3: CUL4B promotes migration and invasion of BC cells.
Fig. 4: CUL4B enhances stemness and chemoresistance of BC cells.
Fig. 5: CUL4B positively regulates the PI3K-AKT pathway.
Fig. 6: CUL4B upregulates PIK3CA by repressing miR-372/373.
Fig. 7: CUL4B epigenetically represses transcription of miR-371–373.
Fig. 8: A schematic model showing CUL4B-miR-372/373-PIK3CA-AKT axis contributing to the tumorigenesis of BC.


  1. 1.

    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  Google Scholar 

  2. 2.

    Sanli O, Dobruch J, Knowles MA, Burger M, Alemozaffar M, Nielsen ME, et al. Bladder cancer. Nat Rev Dis Prim. 2017;3:17022.

    PubMed  Google Scholar 

  3. 3.

    Knowles MA, Hurst CD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer. 2015;15:25–41.

    CAS  PubMed  Google Scholar 

  4. 4.

    Choi W, Ochoa A, Mcconkey DJ, Aine M, Höglund M, Kim WY, et al. Genetic alterations in the molecular subtypes of bladder cancer: illustration in the Cancer Genome Atlas dataset. Eur Urol. 2017;72:354–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Network CGA. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507:315–22.

    Google Scholar 

  6. 6.

    Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. Nat Rev Cancer. 2002;2:489–501.

    CAS  PubMed  Google Scholar 

  7. 7.

    Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4:988–1004.

    CAS  PubMed  Google Scholar 

  8. 8.

    Mayer IA, Arteaga CL. The PI3K/AKT pathway as a target for cancer treatment. Annu Rev Med. 2015;67:11–28.

    PubMed  Google Scholar 

  9. 9.

    Mensah FA, Blaize JP, Bryan LJ. Spotlight on copanlisib and its potential in the treatment of relapsed/refractory follicular lymphoma: evidence to date. Onco Targets Ther. 2018;11:4817–27.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Caino MC, Ghosh JC, Chae YC, Vaira V, Rivadeneira DB, Faversani A, et al. PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion. Proc Natl Acad Sci USA. 2015;112:8638–43.

    CAS  PubMed  Google Scholar 

  11. 11.

    Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JF. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets. 2008;8:187–98.

    CAS  PubMed  Google Scholar 

  12. 12.

    Paplomata E, O’Regan R. The PI3K/AKT/mTOR pathway in breast cancer: targets, trials and biomarkers. Ther Adv Med Oncol. 2014;6:154–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Hu H, Yang Y, Ji Q, Zhao W, Jiang B, Liu R, et al. CRL4B catalyzes H2AK119 monoubiquitination and coordinates with PRC2 to promote tumorigenesis. Cancer Cell. 2012;22:781–95.

    CAS  PubMed  Google Scholar 

  14. 14.

    Wei Z, Guo H, Liu Z, Zhang X, Liu Q, Qian Y, et al. CUL4B impedes stress-induced cellular senescence by dampening a p53-reactive oxygen species positive feedback loop. Free Radic Bio Med. 2015;79:1–13.

    CAS  Google Scholar 

  15. 15.

    Zou Y, Mi J, Cui J, Lu D, Zhang X, Guo C, et al. Characterization of nuclear localization signal in the N terminus of CUL4B and its essential role in cyclin E degradation and cell cycle progression. J Biol Chem. 2009;284:33320–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Hannah J, Zhou P. Distinct and overlapping functions of the cullin E3 ligase scaffolding proteins CUL4A and CUL4B. Gene. 2015;573:33–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Li P, Song Y, Zan W, Qin L, Han S, Jiang B, et al. Lack of CUL4B in adipocytes promotes PPARγ-mediated adipose tissue expansion and insulin sensitivity. Diabetes.2017;66:300–13.

    CAS  PubMed  Google Scholar 

  18. 18.

    Zou Y, Liu Q, Chen B, Zhang X, Guo C, Zhou H, et al. Mutation in CUL4B, which encodes a member of cullin-RING ubiquitin ligase complex, causes X-linked mental retardation. Am J Hum Genet. 2007;80:561–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Tarpey PS, Raymond FL, O’Meara S, Edkins S, Teague J, Butler A, et al. Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor. Am J Hum Genet. 2007;80:345–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Yuan J, Han B, Hu H, Qian Y, Liu Z, Wei Z, et al. CUL4B activates Wnt/β-catenin signalling in hepatocellular carcinoma by repressing Wnt antagonists. J Pathol. 2015;235:784–95.

    CAS  PubMed  Google Scholar 

  21. 21.

    Qi M, Jiao M, Li X, Hu J, Wang L, Zou Y, et al. CUL4B promotes gastric cancer invasion and metastasis-involvement of upregulation of HER2. Oncogene. 2017;37:1075–85.

    PubMed  Google Scholar 

  22. 22.

    Mi J, Zou Y, Lin X, Lu J, Liu X, Zhao H, et al. Dysregulation of the miR-194-CUL4B negative feedback loop drives tumorigenesis in non-small-cell lung carcinoma. Mol Oncol. 2017;11:305–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Qian Y, Yuan J, Hu H, Yang Q, Li J, Zhang S, et al. The CUL4B/AKT/β-catenin axis restricts the accumulation of myeloid-derived suppressor cells to prohibit the establishment of a tumor permissive microenvironment. Cancer Res. 2015;75:5070–83.

    CAS  PubMed  Google Scholar 

  24. 24.

    Xu Z, Li L, Qian Y, Song Y, Qin L, Duan Y, et al. Upregulation of IL-6 in CUL4B-deficient myeloid-derived suppressive cells increases the aggressiveness of cancer cells. Oncogene. 2019;38:5860–72.

  25. 25.

    Ji Q, Hu H, Yang F, Yuan J, Yang Y, Jiang L, et al. CRL4B interacts with and coordinates the SIN3A-HDAC complex to repress CDKN1A and drive cell cycle progression. J Cell Sci. 2014;127:4679–91.

    PubMed  Google Scholar 

  26. 26.

    Yang Y, Liu R, Qiu R, Zheng Y, Huang W, Hu H, et al. CRL4B promotes tumorigenesis by coordinating with SUV39H1/HP1/DNMT3A in DNA methylation-based epigenetic silencing. Oncogene. 2015;34:104–18.

    PubMed  Google Scholar 

  27. 27.

    Mao XW, Xiao JQ, Xu G, Li ZY, Wu HF, Li Y, et al. CUL4B promotes bladder cancer metastasis and induces epithelial-to-mesenchymal transition by activating the Wnt/β-catenin signaling pathway. Oncotarget. 2017;8:77241–53.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Bubeník J, Barešová M, Viklický V, Jakoubková J, Sainerová H, Donner J. Established cell line of urinary bladder carcinoma (T24) containing tumour-specific antigen. Int J Cancer. 1973;11:765–73.

    PubMed  Google Scholar 

  29. 29.

    See WA, Xu Y, Gee K, Severson C, Cohen MB, Ladehoff D. Transurethral bladder tumor resection alters fibronectin expression in transitional carcinoma cell lines. J Urol. 1997;157:1136–43.

    CAS  PubMed  Google Scholar 

  30. 30.

    Kuwada M, Chihara Y, Luo Y, Li X, Nishiguchi Y, Fujiwara R, et al. Pro-chemotherapeutic effects of antibody against extracellular domain of claudin-4 in bladder cancer. Cancer Lett. 2015;369:212–21.

    CAS  PubMed  Google Scholar 

  31. 31.

    Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23:1124–34.

    CAS  PubMed  Google Scholar 

  32. 32.

    Sheng S, Qiao M, Pardee AB. Metastasis and AKT activation. Cell Cycle. 2008;7:2991–6.

    PubMed  Google Scholar 

  33. 33.

    Julien S, Puig I, Caretti E, Bonaventure J, Nelles L, van Roy F, et al. Activation of NF-κB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene. 2008;26:7445–56.

    Google Scholar 

  34. 34.

    Zhao M, Qi M, Li X, Hu J, Zhang J, Jiao M, et al. CUL4B/miR-33b/C-MYC axis promotes prostate cancer progression. Prostate. 2019;79:480–8.

    CAS  PubMed  Google Scholar 

  35. 35.

    Zou Y, Mi J, Wang W, Lu J, Zhao W, Liu Z, et al. CUL4B promotes replication licensing by up-regulating the CDK2-CDC6 cascade. J Cell Biol. 2013;200:743–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    El-Daly SM, Abba ML, Patil N, Allgayer H. miRs-134 and -370 function as tumor suppressors in colorectal cancer by independently suppressing EGFR and PI3K signalling. Sci Rep. 2016;6:24720.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Adi Harel S, Bossel Ben-Moshe N, Aylon Y, Bublik DR, Moskovits N, Toperoff G, et al. Reactivation of epigenetically silenced miR-512 and miR-373 sensitizes lung cancer cells to cisplatin and restricts tumor growth. Cell Death Differ. 2015;22:1328–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Qi M, Hu J, Cui Y, Jiao M, Feng T, Li X, et al. CUL4B promotes prostate cancer progression by forming positive feedback loop with SOX4. Oncogenesis. 2019;8:23.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Zhang Y, Khoo HE, Esuvaranathan K. Effects of bacillus Calmette–Guerin and interferon-alpha-2B on human bladder cancer in vitro. Int J Cancer. 1997;71:851–7.

    CAS  PubMed  Google Scholar 

  40. 40.

    Ler LD, Ghosh S, Chai X, Thike AA, Heng HL, Siew EY, et al. Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2. Sci Transl Med. 2017;9:eaai8312.

  41. 41.

    Lang A, Yilmaz M, Hader C, Murday S, Kunz X, Wagner N, et al. Contingencies of UTX/KDM6A action in urothelial carcinoma. Cancers. 2019;11:E481.

  42. 42.

    Earl J, Rico D, Carrillo-de-Santa-Pau E, Rodriguez-Santiago B, Mendez-Pertuz M, Auer H, et al. The UBC-40 urothelial bladder cancer cell line index: a genomic resource for functional studies. BMC Genom. 2015;16:403.

    Google Scholar 

  43. 43.

    Solomon DA, Kim JS, Bondaruk J, Shariat SF, Wang ZF, Elkahloun AG, et al. Frequent truncating mutations of STAG2 in bladder cancer. Nat Genet. 2013;45:1428–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Vasudevan KM, Barbie DA, Davies MA, Rabinovsky R, McNear CJ, Kim JJ, et al. AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer. Cancer Cell. 2009;16:21–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell. 2017;169:381–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Cicenas J. The potential role of Akt phosphorylation in human cancers. Int J Biol Markers. 2008;23:1–9.

    CAS  PubMed  Google Scholar 

  47. 47.

    Platt FM, Hurst CD, Taylor CF, Gregory WM, Patricia H, Knowles MA. Spectrum of phosphatidylinositol 3-kinase pathway gene alterations in bladder cancer. Clin Cancer Res. 2009;15:6008–17.

    CAS  PubMed  Google Scholar 

  48. 48.

    Yardena S, Zhenghe W, Alberto B, Natalie S, Janine P, Steve S, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304:554.

    Google Scholar 

  49. 49.

    Lang Q, Ling C. MiR-124 suppresses cell proliferation in hepatocellular carcinoma by targeting PIK3CA. Biochem Biophys Res Commun. 2012;426:247–52.

    CAS  PubMed  Google Scholar 

  50. 50.

    Liu J, Li Q, Li R, Ren P, Dong S. MicroRNA-363-3p inhibits papillary thyroid carcinoma progression by targeting PIK3CA. Am J Cancer Res. 2017;7:148–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Yu QQ, Wu H, Huang X, Shen H, Shu YQ, Zhang B, et al. MiR-1 targets PIK3CA and inhibits tumorigenic properties of A549 cells. Biomed Pharmacother. 2014;68:155–61.

    CAS  PubMed  Google Scholar 

  52. 52.

    Segovia C, Martínez-Fernández M, Dueñas M, Rubio C. Opposing roles of PIK3CA gene alterations to EZH2 signaling in nonmuscle-invasive bladder cancer. Oncotarget. 2016;6:10531–42.

    Google Scholar 

Download references


The authors would like to thank Dr M. Oren for kindly providing psiCHECK2 reporter plasmids containing the 3′UTR wide-type and mutant sequences of PIK3CA. This work was supported by the National Natural Science Foundation of China (81330050 and 81571523 to YG, 31671427 to YZ, 81770660 to GL); the Natural Science Foundation of Shandong Province (ZR2016HZ01 to YG); the Key Research and Development Program of Shandong Province (2016ZDJS07A08 to YG); and Young Scholars Program of Shandong University (to YZ).

Author information



Corresponding authors

Correspondence to Yongxin Zou or Yaoqin Gong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Cui, J., Gong, L. et al. The CUL4B-miR-372/373-PIK3CA-AKT axis regulates metastasis in bladder cancer. Oncogene 39, 3588–3603 (2020).

Download citation

Further reading


Quick links