Modeling clear cell renal cell carcinoma and therapeutic implications

Abstract

Renal cell carcinoma (RCC) comprises a diverse group of malignancies arising from the nephron. The most prevalent type, clear cell renal cell carcinoma (ccRCC), is characterized by genetic mutations in factors governing the hypoxia signaling pathway, resulting in metabolic dysregulation, heightened angiogenesis, intratumoral heterogeneity, and deleterious tumor microenvironmental (TME) crosstalk. Identification of specific genetic variances has led to therapeutic innovation and improved survival for patients with ccRCC. Current barriers to effective long-term therapeutic success highlight the need for continued drug development using improved modeling systems. ccRCC preclinical models can be grouped into three broad categories: cell line, mouse, and 3D models. Yet, the breadth of important unanswered questions in ccRCC research far exceeds the accessibility of model systems capable of carrying them out. Accordingly, we review the strengths, weaknesses, and therapeutic implications of each model system that are relied upon today.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Advantages and disadvantages of model system platforms in RCC.
Fig. 2: Location of ccRCC associated genes in the human and mouse genome.
Fig. 3: Cre drivers in kidney epithelial cell deletion.
Fig. 4: Genetically engineered RCC mouse models.

References

  1. 1.

    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  Google Scholar 

  2. 2.

    Le Magnen C, Dutta A, Abate-Shen C. Optimizing mouse models for precision cancer prevention. Nat Rev Cancer. 2016;16:187–96.

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Prasetyanti PR, Medema JP. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer. 2017;16:41.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Haake SM, Rathmell WK. Renal cancer subtypes: should we be lumping or splitting for therapeutic decision making? Cancer. 2017;123:200–9.

    PubMed  Google Scholar 

  5. 5.

    Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. The 2016 WHO classification of tumours of the urinary system and male genital organs—Part A: renal, penile, and testicular tumours. Eur Urol. 2016;70:93–105.

    PubMed  Google Scholar 

  6. 6.

    Kovacs G, Akhtar M, Beckwith BJ, Bugert P, Cooper CS, Delahunt B, et al. The Heidelberg classification of renal cell tumours. J Pathol. 1997;183:131–3.

    CAS  PubMed  Google Scholar 

  7. 7.

    Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, et al. Renal cell carcinoma. Nat Rev Dis Prim. 2017;3:17009.

    PubMed  Google Scholar 

  8. 8.

    Linehan WM, Walther MM, Zbar B. The genetic basis of cancer of the kidney. J Urol. 2003;170:2163–72.

    CAS  PubMed  Google Scholar 

  9. 9.

    Ricketts CJ, De Cubas AA, Fan H, Smith CC, Lang M, Reznik E, et al. The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 2018;23:313–26.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Sinha R, Winer AG, Chevinsky M, Jakubowski C, Chen Y-B, Dong Y, et al. Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection. Nat Commun. 2017;8:15165.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, et al. Identification of the von Hippel–Lindau disease tumor suppressor gene. Science. 1993;260:1317–20.

    CAS  PubMed  Google Scholar 

  12. 12.

    Haake SM, Weyandt JD, Rathmell WK. Insights into the genetic basis of the renal cell carcinomas from The Cancer Genome Atlas. Mol Cancer Res. 2016;14:589–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Moore LE, Nickerson ML, Brennan P, Toro JR, Jaeger E, Rinsky J, et al. Von Hippel-Lindau (VHL) inactivation in sporadic clear cell renal cancer: associations with germline VHL polymorphisms and etiologic risk factors. PLoS Genet. 2011;7:e1002312.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Maxwell PH, Wiesener MS, Chang G-W, Clifford SC, Vaux EC, Cockman ME, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399:271–5.

    CAS  PubMed  Google Scholar 

  15. 15.

    Chappell JC, Payne LB, Rathmell WK. Hypoxia, angiogenesis, and metabolism in the hereditary kidney cancers. J Clin Investig. 2019;129:442–51.

    PubMed  Google Scholar 

  16. 16.

    Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463:899–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Mitchell TJ, Turajlic S, Rowan A, Nicol D, Farmery JHR, O’Brien T, et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell. 2018;173:611–23.e17.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Jonasch E, Gao J, Rathmell WK. Renal cell carcinoma. BMJ. 2014;349:g4797.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–49.

    Google Scholar 

  20. 20.

    Schaaf MB, Garg AD, Agostinis P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis. 2018;9:115.

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Wettersten HI, Aboud OA, Lara PN, Weiss RH. Metabolic reprogramming in clear cell renal cell carcinoma. Nat Rev Nephrol. 2017;13:410–9.

    CAS  PubMed  Google Scholar 

  22. 22.

    Ebos JML, Kerbel RS. Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol. 2011;8:210–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H, et al. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther. 2012;11:1672–82.

    CAS  PubMed  Google Scholar 

  24. 24.

    Shuch B, Amin A, Armstrong AJ, Eble JN, Ficarra V, Lopez-Beltran A, et al. Understanding pathologic variants of renal cell carcinoma: distilling therapeutic opportunities from biologic complexity. Eur Urol. 2015;67:85–97.

    PubMed  Google Scholar 

  25. 25.

    The Cancer Genome Atlas Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–49.

  26. 26.

    de Cubas AA, Rathmell WK. Epigenetic modifiers: activities in renal cell carcinoma. Nat Rev Urol. 2018;15:599–614.

    PubMed  Google Scholar 

  27. 27.

    Beksac AT, Paulucci DJ, Blum KA, Yadav SS, Sfakianos JP, Badani KK. Heterogeneity in renal cell carcinoma. Urol Oncol Semin Orig Investig. 2017;35:507–15.

    CAS  Google Scholar 

  28. 28.

    Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Turajlic S, Xu H, Litchfield K, Larkin J. Deterministic evolutionary trajectories influence primary tumor growth: TRACERx renal. Cell. 2018;173:595–607.e11.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Turajlic S, Xu H, Litchfield K, Rowan A, Chambers T, Lopez JI, et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal. Cell. 2018;173:581–94.e12.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Rini BI, Escudier B, Martini J-F, Magheli A, Svedman C, Lopatin M, et al. Validation of the 16-gene recurrence score in patients with locoregional, high-risk renal cell carcinoma from a phase iii trial of adjuvant sunitinib. Clin Cancer Res. 2018;24:4407–15.

    CAS  PubMed  Google Scholar 

  32. 32.

    Ghatalia P, Rathmell WK. Systematic review: ClearCode 34—a validated prognostic signature in clear cell renal cell carcinoma (ccRCC). Kidney Cancer. 2018;2:23–29.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Brooks SA, Brannon AR, Parker JS, Fisher JC, Sen O, Kattan MW, et al. ClearCode34: a prognostic risk predictor for localized clear cell renal cell carcinoma. Eur Urol. 2014;66:77–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    de Velasco G, Culhane AC, Fay AP, Hakimi AA, Voss MH, Tannir NM, et al. Molecular subtypes improve prognostic value of international metastatic renal cell carcinoma database consortium prognostic model. Oncologist. 2017;22:286–92.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Rini B, Goddard A, Knezevic D, Maddala T, Zhou M, Aydin H, et al. A 16-gene assay to predict recurrence after surgery in localised renal cell carcinoma: development and validation studies. Lancet Oncol. 2015;16:676–85.

    CAS  PubMed  Google Scholar 

  36. 36.

    Hartmann JT, Bokemeyer C. Chemotherapy for renal cell carcinoma. Anticancer Res; 19:1541–3.

  37. 37.

    Motzer RJ, Mazumdar M, Bacik J, Berg W, Amsterdam A, Ferrara J. Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J Clin Oncol. 1999;17:2530–40.

    CAS  PubMed  Google Scholar 

  38. 38.

    Sherwood LM, Parris EE, Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    Google Scholar 

  39. 39.

    Barata PC, Rini BI. Treatment of renal cell carcinoma: current status and future directions. CA Cancer J Clin. 2017;67:507–24.

    PubMed  Google Scholar 

  40. 40.

    Kucejova B, Peña-Llopis S, Yamasaki T, Sivanand S, Tran TAT, Alexander S, et al. Interplay between pVHL and mTORC1 pathways in clear-cell renal cell carcinoma. Mol Cancer Res. 2011;9:1255–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Rini BI. Temsirolimus, an inhibitor of mammalian target of Rapamycin. Clin Cancer Res. 2008;14:1286–90.

    CAS  PubMed  Google Scholar 

  42. 42.

    Harshman LC, Kroeger N, Rha SY, Donskov F, Wood L, Tantravahi SK, et al. First-line mammalian target of rapamycin inhibition in metastatic renal cell carcinoma: an analysis of practice patterns from the International Metastatic Renal Cell Carcinoma Database Consortium. Clin Genitourin Cancer. 2014;12:335–40.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science (80-). 1996;271:1734–6.

    CAS  Google Scholar 

  44. 44.

    Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11:141–51.

    CAS  PubMed  Google Scholar 

  45. 45.

    Motzer RJ, Tannir NM, McDermott DF, Arén Frontera O, Melichar B, Choueiri TK, et al. Nivolumab plus Ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378:1277–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Motzer RJ, Penkov K, Haanen J, Rini B, Albiges L, Campbell MT, et al. Avelumab plus Axitinib versus Sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380:1103–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373:1803–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Santoni M, Massari F, Di Nunno V, Conti A, Cimadamore A, Scarpelli M, et al. Immunotherapy in renal cell carcinoma: latest evidence and clinical implications. Drugs Context. 2018;7:212528.

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Rini BI, Powles T. Immune checkpoint blockade plus axitinib for renal-cell carcinoma. N Engl J Med. 2019;380:2581–2.

    Google Scholar 

  50. 50.

    Beckermann KE, Johnson DB, Sosman JA. PD-1/PD-L1 blockade in renal cell cancer. Exp Rev Clin Immunol. 2017;13:77–84.

    CAS  Google Scholar 

  51. 51.

    Lopez-Beltran A, Henriques V, Cimadamore A, Santoni M, Cheng L, Gevaert T, et al. The identification of immunological biomarkers in kidney cancers. Front Oncol. 2018;8:456.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    McDermott DF, Huseni MA, Atkins MB, Motzer RJ, Rini BI, Escudier B, et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med. 2018;24:749–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Kondo K, Yao M, Kobayashi K, Ota S, Yoshida M, Kaneko S, et al. PTEN/MMAC1/TEP1 mutations in human primary renal-cell carcinomas and renal carcinoma cell lines. Int J Cancer. 2001;91:219–24.

    CAS  PubMed  Google Scholar 

  54. 54.

    Baumans V. Use of animals in experimental research: an ethical dilemma? Gene Ther. 2004;11:S64–S66.

    CAS  PubMed  Google Scholar 

  55. 55.

    Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer. 2006;6:813–23.

    CAS  PubMed  Google Scholar 

  56. 56.

    Brodaczewska KK, Szczylik C, Fiedorowicz M, Porta C, Czarnecka AM. Choosing the right cell line for renal cell cancer research. Mol Cancer. 2016;15:83.

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the catalogue Of somatic mutations in cancer. Nucleic Acids Res. 2019;47:D941–D947.

    CAS  PubMed  Google Scholar 

  58. 58.

    Iliopoulos O, Kibel A, Gray S, Kaelin WG. Tumour suppression by the human von Hippel-Lindau gene product. Nat Med. 1995;1:822–6.

    CAS  PubMed  Google Scholar 

  59. 59.

    Iliopoulos O, Levy AP, Jiang C, Kaelin WG, Goldberg MA. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci USA. 1996;93:10595–9.

    CAS  PubMed  Google Scholar 

  60. 60.

    Kondo K, Klco J, Nakamura E, Lechpammer M, Kaelin WG. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell. 2002;1:237–46.

    CAS  PubMed  Google Scholar 

  61. 61.

    Zhao C-X, Luo C-L, Wu X-H. Hypoxia promotes 786-O cells invasiveness and resistance to sorafenib via HIF-2α/COX-2. Med Oncol. 2015;32:419.

    PubMed  Google Scholar 

  62. 62.

    Huang B, Huang YJ, Yao ZJ, Chen X, Guo SJ, Mao XP, et al. Cancer stem cell-like side population cells in clear cell renal cell carcinoma cell line 769P. PLoS ONE. 2013;8:e68293.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Pichler R, Compérat E, Klatte T, Pichler M, Loidl W, Lusuardi L et al. Renal cell carcinoma with sarcomatoid features: finally new therapeutic hope? Cancers. 2019;11. https://doi.org/10.3390/cancers11030422.

  64. 64.

    Zhou S, Schuetz JD, Bunting KD, Colapietro A-M, Sampath J, Morris JJ, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001;7:1028–34.

    CAS  PubMed  Google Scholar 

  65. 65.

    Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Broad Institute Cancer Cell Line Encyclopedia (CCLE). https://portals.broadinstitute.org/ccle (Accessed 2 Feb 2020).

  67. 67.

    Robb VA, Karbowniczek M, Klein-Szanto AJ, Henske EP. Activation of the mTOR signaling pathway in renal clear cell carcinoma. J Urol. 2007;177:346–52.

    PubMed  Google Scholar 

  68. 68.

    Hudes GR. Targeting mTOR in renal cell carcinoma. Cancer. 2009;115:2313–20.

    CAS  PubMed  Google Scholar 

  69. 69.

    Shinojima T, Oya M, Takayanagi A, Mizuno R, Shimizu N, Murai M. Renal cancer cells lacking hypoxia inducible factor (HIF)-1 expression maintain vascular endothelial growth factor expression through HIF-2. Carcinogenesis. 2006;28:529–36.

    PubMed  Google Scholar 

  70. 70.

    Korhonen M, Sariola H, Gould VE, Kangas L, Virtanen I. Integrins and laminins in human renal carcinoma cells and tumors grown in nude mice. Cancer Res. 1994;54:4532–8.

    CAS  PubMed  Google Scholar 

  71. 71.

    Thomas GV, Tran C, Mellinghoff IK, Welsbie DS, Chan E, Fueger B, et al. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med. 2006;12:122–7.

    CAS  PubMed  Google Scholar 

  72. 72.

    Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973;51:1417–23.

    CAS  PubMed  Google Scholar 

  73. 73.

    Sanchez Y, el-Naggar A, Pathak S, Killary AM. A tumor suppressor locus within 3p14-p12 mediates rapid cell death of renal cell carcinoma in vivo. Proc Natl Acad Sci USA. 1994;91:3383–7.

    CAS  PubMed  Google Scholar 

  74. 74.

    Gioanni J, Zanghellini E, Mazeau C, Amiel J, Poustis-Delpont C, Lagrange JL, et al. CAL 54, a new cell line derived from a human renal carcinoma: characterization and radiosensitivity. Bull Cancer. 1996;83:553–8.

    CAS  PubMed  Google Scholar 

  75. 75.

    Rangarajan A, Weinberg RA. Comparative biology of mouse versus human cells: modelling human cancer in mice. Nat Rev Cancer. 2003;3:952–9.

    CAS  PubMed  Google Scholar 

  76. 76.

    Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet. 2014;46:225–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Klinghammer K, Walther W, Hoffmann J. Choosing wisely—preclinical test models in the era of precision medicine. Cancer Treat Rev. 2017;55:36–45.

    PubMed  Google Scholar 

  78. 78.

    Chen Q, Wang J, Liu WN, Zhao Y. Cancer immunotherapies and humanized mouse drug testing platforms. Transl Oncol. 2019;12:987–95.

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Prochazka M, Gaskins HR, Shultz LD, Leiter EH. The nonobese diabetic scid mouse: model for spontaneous thymomagenesis associated with immunodeficiency. Proc Natl Acad Sci USA. 1992;89:3290–4.

    CAS  PubMed  Google Scholar 

  80. 80.

    Pavía-Jiménez A, Tcheuyap VT, Brugarolas J. Establishing a human renal cell carcinoma tumorgraft platform for preclinical drug testing. Nat Protoc. 2014;9:1848–59.

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Grisanzio C, Seeley A, Chang M, Collins M, Di Napoli A, Cheng S-C, et al. Orthotopic xenografts of RCC retain histological, immunophenotypic and genetic features of tumours in patients. J Pathol. 2011;225:212–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Lee C-H, Motzer RJ. Kidney cancer in 2016: The evolution of anti-angiogenic therapy for kidney cancer. Nat Rev Nephrol. 2017;13:69–70.

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Rojas JD, Papadopoulou V, Czernuszewicz TJ, Rajamahendiran RM, Chytil A, Chiang Y-C, et al. Ultrasound measurement of vascular density to evaluate response to anti-angiogenic therapy in renal cell carcinoma. IEEE Trans Biomed Eng. 2019;66:873–80.

    PubMed  Google Scholar 

  84. 84.

    Schor-Bardach R, Alsop DC, Pedrosa I, Solazzo SA, Wang X, Marquis RP, et al. Does arterial spin-labeling MR imaging–measured tumor perfusion correlate with renal cell cancer response to antiangiogenic therapy in a mouse model? Radiology. 2009;251:731–42.

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Cuenod CA, Fournier L, Balvay D, Guinebretière J-M. Tumor angiogenesis: pathophysiology and implications for contrast-enhanced MRI and CT assessment. Abdom Imaging. 2006;31:188–93.

    CAS  PubMed  Google Scholar 

  86. 86.

    Dong Y, Manley BJ, Becerra MF, Redzematovic A, Casuscelli J, Tennenbaum DM, et al. Tumor xenografts of human clear cell renal cell carcinoma but not corresponding cell lines recapitulate clinical response to sunitinib: feasibility of using biopsy samples. Eur Urol Focus. 2017;3:590–8.

    PubMed  Google Scholar 

  87. 87.

    Patel A, Cohen S, Moret R, Maresh G, Gobe GC, Li L. Patient-derived xenograft models to optimize kidney cancer therapies. Transl Androl Urol. 2019;8:S156.

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Lai Y, Wei X, Lin S, Qin L, Cheng L, Li P. Current status and perspectives of patient-derived xenograft models in cancer research. J Hematol Oncol. 2017;10:106.

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Peña-Llopis S, Vega-Rubín-de-Celis S, Liao A, Leng N, Pavía-Jiménez A, Wang S, et al. BAP1 loss defines a new class of renal cell carcinoma. Nat Genet. 2012;44:751–9.

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Hakimi AA, Ostrovnaya I, Reva B, Schultz N, Chen Y-B, Gonen M, et al. Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clin Cancer Res. 2013;19:3259–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Lampreht Tratar U, Horvat S, Cemazar M. Transgenic mouse models in cancer research. Front Oncol. 2018;8:268.

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Wiltrout RH, Hornung RL, Futami H, Back TT, Young HA, Sayers TJ. Murine renal cancer (Renca) model: background and preclinical studies. In: Immunotherapy of renal cell carcinoma. Springer Berlin Heidelberg: Berlin, Heidelberg, 1991, p 13–9.

  93. 93.

    Schokrpur S, Hu J, Moughon DL, Liu P, Lin LC, Hermann K, et al. CRISPR-mediated VHL knockout generates an improved model for metastatic renal cell carcinoma. Sci Rep. 2016;6:29032.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Shvarts O, Janzen N, Lam JS, Leppert JT, Caliliw R, Figlin RA, et al. RENCA/carbonic anhydrase-IX: a murine model of a carbonic anhydrase-IX-expressing renal cell carcinoma. Urology. 2006;68:1132–8.

    PubMed  Google Scholar 

  95. 95.

    Berlato C, Khan MN, Schioppa T, Thompson R, Maniati E, Montfort A, et al. A CCR4 antagonist reverses the tumor-promoting microenvironment of renal cancer. J Clin Investig. 2017;127:801–13.

    PubMed  Google Scholar 

  96. 96.

    Devaud C, Yong CSM, John LB, Westwood JA, Duong CPM, House CM, et al. Foxp3 expression in macrophages associated with RENCA tumors in mice. PLoS ONE. 2014;9:e108670.

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Sivanand S, Peña-Llopis S, Zhao H, Kucejova B, Spence P, Pavia-Jimenez A, et al. A validated tumorgraft model reveals activity of dovitinib against renal cell carcinoma. Sci Transl Med. 2012;4:137ra75.

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Espana-Agusti J, Warren A, Chew SK, Adams DJ, Matakidou A. Loss of PBRM1 rescues VHL dependent replication stress to promote renal carcinogenesis. Nat Commun. 2017;8:2026.

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Kleymenova E, Everitt JI, Pluta L, Portis M, Gnarra JR, Walker CL. Susceptibility to vascular neoplasms but no increased susceptibility to renal carcinogenesis in Vhl knockout mice. Carcinogenesis. 2004;25:309–15.

    CAS  PubMed  Google Scholar 

  100. 100.

    Lee CM, Hickey M, Sanford CA, Mcguire CG, Cowey CL, Simon MC, et al. VHL type 2B gene mutation moderates HIF dosage in vitro and in vivo HHS public access. Oncogene. 2009;28:1694–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Cheval L, Pierrat F, Rajerison R, Piquemal D, Doucet A. Of mice and men: divergence of gene expression patterns in kidney. PLoS ONE. 2012;7:e46876.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Liao L, Testa JR, Yang H. The roles of chromatin-remodelers and epigenetic modifiers in kidney cancer. Cancer Genet. 2015;208:206–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Bult CJ, Blake JA, Smith CL, Kadin JARJ. Mouse genome database (MGD). Nucleic Acids Res. 2019;47:D801–D806.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Sanchez DJ, Simon MC. Genetic and metabolic hallmarks of clear cell renal cell carcinoma. Biochim Biophys Acta Rev Cancer. 2018;1870:23–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Ideno N, Yamaguchi H, Okumura T, Huang J, Brun MJ, Ho ML, et al. A pipeline for rapidly generating genetically engineered mouse models of pancreatic cancer using in vivo CRISPR-Cas9-mediated somatic recombination. Lab Investig. 2019;99:1233.

    CAS  PubMed  Google Scholar 

  106. 106.

    Kersten K, de Visser KE, van Miltenburg MH, Jonkers J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med. 2017;9:137–53.

    CAS  PubMed  Google Scholar 

  107. 107.

    Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011;469:539–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Nargund AM, Pham CG, Dong Y, Wang PI, Osmangeyoglu HU, Xie Y, et al. The SWI/SNF protein PBRM1 restrains VHL-loss-driven clear cell renal cell carcinoma. Cell Rep. 2017;18:2893–906.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Shao X, Somlo S, Igarashi P. Epithelial-specific Cre/lox recombination in the developing kidney and genitourinary tract. J Am Soc Nephrol. 2002;13:1837–46.

    CAS  PubMed  Google Scholar 

  110. 110.

    Gu Y-F, Cohn S, Christie A, McKenzie T, Wolff N, Do QN, et al. Modeling renal cell carcinoma in mice: Bap1 and Pbrm1 inactivation drive tumor grade. Cancer Discov. 2017;7:900–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Bouchard M, Souabni A, Mandler M, Neubüser A, Busslinger M. Nephric lineage specification by Pax2 and Pax8. Genes Dev. 2002;16:2958–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Bouchard M, Souabni A, Busslinger M. Tissue-specific expression of cre recombinase from thePax8 locus. Genesis. 2004;38:105–9.

    CAS  PubMed  Google Scholar 

  113. 113.

    Capitanio U, Montorsi F. Renal cancer. Lancet. 2016;387:894–906.

    PubMed  Google Scholar 

  114. 114.

    Wallace AC, Nairn RC. Renal tubular antigens in kidney tumors. Cancer. 1972;29:977–81.

    CAS  PubMed  Google Scholar 

  115. 115.

    Schuetz AN, Yin-Goen Q, Amin MB, Moreno CS, Cohen C, Hornsby CD, et al. Molecular classification of renal tumors by gene expression profiling. J Mol Diagnostics. 2005;7:206–18.

    CAS  Google Scholar 

  116. 116.

    Chen F, Zhang Y, Şenbabaoğlu Y, Ciriello G, Yang L, Reznik E, et al. Multilevel genomics-based taxonomy of renal cell carcinoma. Cell Rep. 2016;14:2476–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Frew IJ, Moch H. A clearer view of the molecular complexity of clear cell renal cell carcinoma. Annu Rev Pathol Mech Dis. 2015;10:263–89.

    CAS  Google Scholar 

  118. 118.

    Young MD, Mitchell TJ, Vieira Braga FA, Tran MGB, Stewart BJ, Ferdinand JR, et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science. 2018;361:594–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Vallon V, Grahammer F, Richter K, Bleich M, Lang F, Barhanin J, et al. Role of KCNE1-dependent K+ fluxes in mouse proximal tubule. J Am Soc Nephrol. 2001;12:2003–11.

    CAS  PubMed  Google Scholar 

  120. 120.

    El Marjou F, Janssen K-P, Hung-Junn Chang B, Li M, Hindie V, Chan L, et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis. 2004;39:186–93.

    CAS  PubMed  Google Scholar 

  121. 121.

    Wang S-S, Gu Y-F, Wolff N, Stefanius K, Christie A, Dey A, et al. Bap1 is essential for kidney function and cooperates with Vhl in renal tumorigenesis. Proc Natl Acad Sci USA. 2014;111:16538–43.

    CAS  PubMed  Google Scholar 

  122. 122.

    Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell. 2008;3:169–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Yao M, Shuin T, Misaki H, Kubota Y. Enhanced expression of c-myc and epidermal growth factor receptor (C-erbB-1) genes in primary human renal cancer. Cancer Res. 1988;48:6753–7.

    CAS  PubMed  Google Scholar 

  124. 124.

    Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer and aging. Cell. 2006;127:265–75.

    CAS  PubMed  Google Scholar 

  125. 125.

    Felsher DW, Bishop JM. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell. 1999;4:199–207.

    CAS  PubMed  Google Scholar 

  126. 126.

    Bailey ST, Smith AM, Kardos J, Wobker SE, Wilson HL, Krishnan B, et al. MYC activation cooperates with Vhl and Ink4a/Arf loss to induce clear cell renal cell carcinoma. Nat Commun. 2017;8:15770.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Harlander S, Schönenberger D, Toussaint NC, Prummer M, Catalano A, Brandt L, et al. Combined mutation in Vhl, Trp53 and Rb1 causes clear cell renal cell carcinoma in mice. Nat Med. 2017;23:869–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Chiang Y-C, Park I-Y, Terzo EA, Tripathi DN, Mason FM, Fahey CC, et al. SETD2 haploinsufficiency for microtubule methylation is an early driver of genomic instability in renal cell carcinoma. Cancer Res. 2018;78:3135–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Clevers H. Modeling development and disease with organoids. Cell. 2016;165:1586–97.

    CAS  Google Scholar 

  130. 130.

    van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161:933–45.

    PubMed  PubMed Central  Google Scholar 

  131. 131.

    Boj SF, Hwang C-I, Baker LA, Chio IIC, Engle DD, Corbo V, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160:324–38.

    CAS  PubMed  Google Scholar 

  132. 132.

    Lee SH, Hu W, Matulay JT, Silva MV, Owczarek TB, Kim K, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell. 2018;173:515–28.e17.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell. 2018;172:373–86.e10.

    CAS  PubMed  Google Scholar 

  134. 134.

    Finnberg NK, Gokare P, Lev A, Grivennikov SI, MacFarlane AW, Campbell KS, et al. Application of 3D tumoroid systems to define immune and cytotoxic therapeutic responses based on tumoroid and tissue slice culture molecular signatures. Oncotarget. 2017;8:66747–57.

    PubMed  PubMed Central  Google Scholar 

  135. 135.

    Grassi L, Alfonsi R, Francescangeli F, Signore M, De Angelis ML, Addario A, et al. Organoids as a new model for improving regenerative medicine and cancer personalized therapy in renal diseases. Cell Death Dis. 2019;10:201.

    PubMed  PubMed Central  Google Scholar 

  136. 136.

    Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, et al. Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids. Nat Med. 2015;21:256–62.

    CAS  PubMed  Google Scholar 

  137. 137.

    Tiriac H, Bucobo JC, Tzimas D, Grewel S, Lacomb JF, Rowehl LM, et al. Successful creation of pancreatic cancer organoids by means of EUS-guided fine-needle biopsy sampling for personalized cancer treatment. Gastrointest Endosc. 2018;87:1474–80.

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J, et al. Organoid modeling of the tumor immune microenvironment. Cell. 2018;175:1972–988.e16.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R, Wongvipat J, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell. 2014;159:163–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40:294–309.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kathryn E. Beckermann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wolf, M.M., Kimryn Rathmell, W. & Beckermann, K.E. Modeling clear cell renal cell carcinoma and therapeutic implications. Oncogene 39, 3413–3426 (2020). https://doi.org/10.1038/s41388-020-1234-3

Download citation