Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cancer-associated mutations in the ribosomal protein L5 gene dysregulate the HDM2/p53-mediated ribosome biogenesis checkpoint

Abstract

Perturbations in ribosome biogenesis have been associated with cancer. Such aberrations activate p53 through the RPL5/RPL11/5S rRNA complex-mediated inhibition of HDM2. Studies using animal models have suggested that this signaling pathway might constitute an important anticancer barrier. To gain a deeper insight into this issue in humans, here we analyze somatic mutations in RPL5 and RPL11 coding regions, reported in The Cancer Genome Atlas and International Cancer Genome Consortium databases. Using a combined computational and statistical approach, complemented by a range of biochemical and functional analyses in human cancer cell models, we demonstrate the existence of several mechanisms by which RPL5 mutations may impair wild-type p53 upregulation and ribosome biogenesis. Unexpectedly, the same approach provides only modest evidence for a similar role of RPL11, suggesting that RPL5 represents a preferred target during human tumorigenesis in cancers with wild-type p53. Furthermore, we find that several functional cancer-associated RPL5 somatic mutations occur as rare germline variants in general population. Our results shed light on the so-far enigmatic role of cancer-associated mutations in genes encoding ribosomal proteins, with implications for our understanding of the tumor suppressive role of the RPL5/RPL11/5S rRNA complex in human malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Assessment of positive selection of RPL5 and RPL11 missense mutations across the combined TCGA/ICGC pan-cancer cohort.
Fig. 2: Functional characterization of clustered RPL5 missense mutations.
Fig. 3: The effects of clustered RPL5 cancer-associated mutations on wt p53 protein expression.
Fig. 4: Assessment of the impact of representative cancer-associated RPL5 or RPL11 missense mutations on RPL5 or RPL11 incorporation into ribosomes.
Fig. 5: A model explaining potential functional impacts of cancer-associated RPL5 mutations.

Similar content being viewed by others

References

  1. Lindstrom MS, Jurada D, Bursac S, Orsolic I, Bartek J, Volarevic S. Nucleolus as an emerging hub in maintenance of genome stability and cancer pathogenesis. Oncogene. 2018;37:2351–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Pelletier J, Thomas G, Volarevic S. Ribosome biogenesis in cancer: new players and therapeutic avenues. Nat Rev Cancer. 2018;18:51–63.

    Article  CAS  PubMed  Google Scholar 

  3. Aspesi A, Ellis SR. Rare ribosomopathies: insights into mechanisms of cancer. Nat Rev Cancer. 2019;19:228–38.

    Article  CAS  PubMed  Google Scholar 

  4. Tafforeau L, Zorbas C, Langhendries JL, Mullineux ST, Stamatopoulou V, Mullier R, et al. The complexity of human ribosome biogenesis revealed by systematic nucleolar screening of Pre-rRNA processing factors. Mol Cell. 2013;51:539–51.

    Article  CAS  PubMed  Google Scholar 

  5. Badertscher L, Wild T, Montellese C, Alexander LT, Bammert L, Sarazova M, et al. Genome-wide RNAi screening identifies protein modules required for 40s subunit synthesis in human cells. Cell Rep. 2015;13:2879–91.

    Article  CAS  PubMed  Google Scholar 

  6. Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M. The structure of the eukaryotic ribosome at 3.0 A resolution. Science. 2011;334:1524–9.

    Article  CAS  PubMed  Google Scholar 

  7. Noller HF. Evolution of protein synthesis from an RNA world. Cold Spring Harb Perspect Biol. 2012;4:a003681.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Tahmasebi S, Khoutorsky A, Mathews MB, Sonenberg N. Translation deregulation in human disease. Nat Rev Mol Cell Biol. 2018;19:791–807.

    Article  CAS  PubMed  Google Scholar 

  9. Narla A, Ebert BL. Ribosomopathies: human disorders of ribosome dysfunction. Blood. 2010;115:3196–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N, et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature. 2008;451:335–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Orsolic I, Jurada D, Pullen N, Oren M, Eliopoulos AG, Volarevic S. The relationship between the nucleolus and cancer: current evidence and emerging paradigms. Semin Cancer Biol. 2016;37-38:36–50.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang J, Harnpicharnchai P, Jakovljevic J, Tang L, Guo Y, Oeffinger M, et al. Assembly factors Rpf2 and Rrs1 recruit 5S rRNA and ribosomal proteins rpL5 and rpL11 into nascent ribosomes. Genes Dev. 2007;21:2580–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Donati G, Peddigari S, Mercer CA, Thomas G. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. Cell Rep. 2013;4:87–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sloan KE, Bohnsack MT, Watkins NJ. The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress. Cell Rep. 2013;5:237–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nicolas E, Parisot P, Pinto-Monteiro C, de Walque R, De Vleeschouwer C, Lafontaine DL. Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress. Nat Commun. 2016;7:11390.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell. 2003;3:577–87.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Wolf GW, Bhat K, Jin A, Allio T, Burkhart WA, et al. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol Cell Biol. 2003;23:8902–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bhat KP, Itahana K, Jin A, Zhang Y. Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation. EMBO J. 2004;23:2402–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dai MS, Lu H. Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem. 2004;279:44475–82.

    Article  CAS  PubMed  Google Scholar 

  20. Bursac S, Brdovcak MC, Pfannkuchen M, Orsolic I, Golomb L, Zhu Y, et al. Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress. Proc Natl Acad Sci USA. 2012;109:20467–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Golomb L, Volarevic S, Oren M. p53 and ribosome biogenesis stress: the essentials. FEBS Lett. 2014;588:2571–9.

    Article  CAS  PubMed  Google Scholar 

  22. Bywater MJ, Poortinga G, Sanij E, Hein N, Peck A, Cullinane C, et al. Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell. 2012;22:51–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Macias E, Jin A, Deisenroth C, Bhat K, Mao H, Lindstrom MS, et al. An ARF-independent c-MYC-activated tumor suppression pathway mediated by ribosomal protein-Mdm2 Interaction. Cancer Cell. 2010;18:231–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu S, Tackmann NR, Yang J, Zhang Y. Disruption of the RP-MDM2-p53 pathway accelerates APC loss-induced colorectal tumorigenesis. Oncogene. 2017;36:1374–83.

    Article  CAS  PubMed  Google Scholar 

  25. Kazerounian S, Ciarlini PD, Yuan D, Ghazvinian R, Alberich-Jorda M, Joshi M, et al. Development of soft tissue sarcomas in ribosomal proteins L5 and S24 heterozygous mice. J Cancer. 2016;7:32–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morgado-Palacin L, Varetti G, Llanos S, Gomez-Lopez G, Martinez D, Serrano M. Partial loss of Rpl11 in adult mice recapitulates diamond-blackfan anemia and promotes lymphomagenesis. Cell Rep. 2015;13:712–22.

    Article  CAS  PubMed  Google Scholar 

  27. Gazda HT, Sheen MR, Vlachos A, Choesmel V, O’Donohue MF, Schneider H, et al. Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am J Hum Genet. 2008;83:769–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vlachos A, Rosenberg PS, Atsidaftos E, Alter BP, Lipton JM. Incidence of neoplasia in Diamond Blackfan anemia: a report from the Diamond Blackfan Anemia Registry. Blood. 2012;119:3815–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. De Keersmaecker K, Atak ZK, Li N, Vicente C, Patchett S, Girardi T, et al. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat Genet. 2013;45:186–90.

    Article  PubMed  CAS  Google Scholar 

  30. Tzoneva G, Perez-Garcia A, Carpenter Z, Khiabanian H, Tosello V, Allegretta M, et al. Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL. Nat Med. 2013;19:368–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zheng J, Lang Y, Zhang Q, Cui D, Sun H, Jiang L, et al. Structure of human MDM2 complexed with RPL11 reveals the molecular basis of p53 activation. Genes Dev. 2015;29:1524–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hofman IJF, Patchett S, van Duin M, Geerdens E, Verbeeck J, Michaux L, et al. Low frequency mutations in ribosomal proteins RPL10 and RPL5 in multiple myeloma. Haematologica. 2017;102:e317–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fancello L, Kampen KR, Hofman IJ, Verbeeck J, De Keersmaecker K. The ribosomal protein gene RPL5 is a haploinsufficient tumor suppressor in multiple cancer types. Oncotarget. 2017;8:14462–78.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505:495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ajore R, Raiser D, McConkey M, Joud M, Boidol B, Mar B, et al. Deletion of ribosomal protein genes is a common vulnerability in human cancer, especially in concert with TP53 mutations. EMBO Mol Med. 2017;9:498–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hofman IJF, van Duin M, De Bruyne E, Fancello L, Mulligan G, Geerdens E, et al. RPL5 on 1p22.1 is recurrently deleted in multiple myeloma and its expression is linked to bortezomib response. Leukemia. 2017;31:1706–14.

    Article  CAS  PubMed  Google Scholar 

  37. Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45:1113–20.

    Article  CAS  Google Scholar 

  38. Zhang J, Baran J, Cros A, Guberman JM, Haider S, Hsu J, et al. International Cancer Genome Consortium Data Portal—a one-stop shop for cancer genomics data. Database. 2011;2011:bar026.

    PubMed  PubMed Central  Google Scholar 

  39. Delaporta P, Sofocleous C, Stiakaki E, Polychronopoulou S, Economou M, Kossiva L, et al. Clinical phenotype and genetic analysis of RPS19, RPL5, and RPL11 genes in Greek patients with Diamond Blackfan anemia. Pediatr Blood Cancer. 2014;61:2249–55.

    Article  CAS  PubMed  Google Scholar 

  40. Flores Ballester E, Gil-Fernandez JJ, Vazquez Blanco M, Mesa JM, de Dios Garcia J, Tamayo AT, et al. Adult-onset Diamond-Blackfan anemia with a novel mutation in the exon 5 of RPL11: too late and too rare. Clin Case Rep. 2015;3:392–5.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Quarello P, Garelli E, Carando A, Brusco A, Calabrese R, Dufour C, et al. Diamond-Blackfan anemia: genotype-phenotype correlations in Italian patients with RPL5 and RPL11 mutations. Haematologica. 2010;95:206–13.

    Article  CAS  PubMed  Google Scholar 

  42. Boria I, Garelli E, Gazda HT, Aspesi A, Quarello P, Pavesi E, et al. The ribosomal basis of Diamond-Blackfan anemia: mutation and database update. Hum Mutat. 2010;31:1269–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cmejla R, Cmejlova J, Handrkova H, Petrak J, Petrtylova K, Mihal V, et al. Identification of mutations in the ribosomal protein L5 (RPL5) and ribosomal protein L11 (RPL11) genes in Czech patients with Diamond-Blackfan anemia. Hum Mutat. 2009;30:321–7.

    Article  CAS  PubMed  Google Scholar 

  44. Errichiello E, Vetro A, Mina T, Wischmeijer A, Berrino E, Carella M, et al. Whole exome sequencing in the differential diagnosis of Diamond-Blackfan anemia: clinical and molecular study of three patients with novel RPL5 and mosaic RPS19 mutations. Blood Cells Mol Dis. 2017;64:38–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pon JR, Marra MA. Driver and passenger mutations in cancer. Annu Rev Pathol. 2015;10:25–50.

    Article  CAS  PubMed  Google Scholar 

  46. Greenman C, Wooster R, Futreal PA, Stratton MR, Easton DF. Statistical analysis of pathogenicity of somatic mutations in cancer. Genetics. 2006;173:2187–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nishimura K, Kumazawa T, Kuroda T, Katagiri N, Tsuchiya M, Goto N, et al. Perturbation of ribosome biogenesis drives cells into senescence through 5S RNP-mediated p53 activation. Cell Rep. 2015;10:1310–23.

    Article  CAS  PubMed  Google Scholar 

  48. Karlin S, Brocchieri L. Evolutionary conservation of RecA genes in relation to protein structure and function. J Bacteriol. 1996;178:1881–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Irving JA, Pike RN, Lesk AM, Whisstock JC. Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function. Genome Res. 2000;10:1845–64.

    Article  CAS  PubMed  Google Scholar 

  50. Sivley RM, Dou X, Meiler J, Bush WS, Capra JA. Comprehensive analysis of constraint on the spatial distribution of missense variants in human protein structures. Am J Hum Genet. 2018;102:415–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kamburov A, Lawrence MS, Polak P, Leshchiner I, Lage K, Golub TR, et al. Comprehensive assessment of cancer missense mutation clustering in protein structures. Proc Natl Acad Sci USA. 2015;112:E5486–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gao J, Chang MT, Johnsen HC, Gao SP, Sylvester BE, Sumer SO, et al. 3D clusters of somatic mutations in cancer reveal numerous rare mutations as functional targets. Genome Med. 2017;9:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Mihalek I, Res I, Yao H, Lichtarge O. Combining inference from evolution and geometric probability in protein structure evaluation. J Mol Biol. 2003;331:263–79.

    Article  CAS  PubMed  Google Scholar 

  54. Horn HF, Vousden KH. Cooperation between the ribosomal proteins L5 and L11 in the p53 pathway. Oncogene. 2008;27:5774–84.

    Article  CAS  PubMed  Google Scholar 

  55. Fersht AR, Daggett V. Protein folding and unfolding at atomic resolution. Cell. 2002;108:573–82.

    Article  CAS  PubMed  Google Scholar 

  56. Dougherty DA, Anslyn EV. Modern physical organic chemistry. University Science Books: Sausalito CA, 2006.

  57. Anderson DE, Becktel WJ, Dahlquist FW. pH-induced denaturation of proteins: a single salt bridge contributes 3-5 kcal/mol to the free energy of folding of T4 lysozyme. Biochemistry. 1990;29:2403–8.

    Article  CAS  PubMed  Google Scholar 

  58. Bohlman S, Manfredi JJ. p53-independent effects of Mdm2. Subcell Biochem. 2014;85:235–46.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Arena G, Riscal R, Linares LK, Le Cam L. MDM2 controls gene expression independently of p53 in both normal and cancer cells. Cell Death Differ. 2018;25:1533–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rahman N. Realizing the promise of cancer predisposition genes. Nature. 2014;505:302–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science. 2008;319:1352–5.

    Article  CAS  PubMed  Google Scholar 

  62. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lykke-Andersen S, Jensen TH. Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat Rev Mol Cell Biol. 2015;16:665–77.

    Article  CAS  PubMed  Google Scholar 

  64. Hunter JD. Matplotlib: a 2d graphics environment. Comput Sci Eng. 2007;9:90–5.

    Article  Google Scholar 

  65. Voorhees RM, Fernandez IS, Scheres SH, Hegde RS. Structure of the mammalian ribosome-Sec61 complex to 3.4 A resolution. Cell. 2014;157:1632–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank, 1999–. International tables for crystallography Volume F: crystallography of biological macromolecules. Springer: Dordrecht, 2006, p 675–84.

  67. Velimezi G, Liontos M, Vougas K, Roumeliotis T, Bartkova J, Sideridou M, et al. Functional interplay between the DNA-damage-response kinase ATM and ARF tumour suppressor protein in human cancer. Nat Cell Biol. 2013;15:967–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs George Thomas and Jonathan Ashwell for critical review of the manuscript and helpful suggestions. We would also like to thank Davor Mihalek for his expert assistance in preparing the supplementary movie as well as Miljana Uzelac and Ivana Matušić for their technical help. The authors sincerely thank Dr. Moshe Oren (Weizmann Institute of Science) for providing the pCMV-HA3-HDM1B expression plasmid. The pCHDM1A-HDM2 expression plasmid was kindly provided by Dr. Karen Vousden (Francis Crick Institute). SV laboratory was supported with grants from the Croatian Science Foundation (09.01/220 and 2079 to SV), the Scientific Center of Excellence for Reproductive and Regenerative Medicine (KK.01.1.1.01.0008 to SV), the University of Rijeka (uniri-biomed-18-206 to SV). JB laboratory is funded by grants from the Swedish Cancer Society (grant number: 170176) and the Swedish Research Council (VR-MH 2014-46602-117891-30), the Novo Nordisk Foundation (no. 16854), the Danish National Research Foundation (project CARD: no. DNRF125), the Danish Cancer Society (R204-A12617), and the Lundbeck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiri Bartek, Ivana Mihalek or Siniša Volarević.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oršolić, I., Bursać, S., Jurada, D. et al. Cancer-associated mutations in the ribosomal protein L5 gene dysregulate the HDM2/p53-mediated ribosome biogenesis checkpoint. Oncogene 39, 3443–3457 (2020). https://doi.org/10.1038/s41388-020-1231-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1231-6

This article is cited by

Search

Quick links