Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Capicua restricts cancer stem cell-like properties in breast cancer cells

Abstract

Cancer stem cells (CSCs) play a central role in cancer initiation, progression, therapeutic resistance, and recurrence in patients. Here we present Capicua (CIC), a developmental transcriptional repressor, as a suppressor of CSC properties in breast cancer cells. CIC deficiency critically enhances CSC self-renewal and multiple CSC subpopulations of breast cancer cells without altering their growth rate or invasiveness. Loss of CIC relieves repression of ETV4 and ETV5 expression, consequently promoting self-renewal capability, EpCAM+/CD44+/CD24low/− expression, and ALDH activity. In xenograft models, CIC deficiency significantly increases CSC frequency and drives tumor initiation through derepression of ETV4. Consistent with the experimental data, the CD44high/CD24low CSC-like feature is inversely correlated with CIC levels in breast cancer patients. We also identify SOX2 as a downstream target gene of CIC that partly promotes CSC properties. Taken together, our study demonstrates that CIC suppresses breast cancer formation via restricting cancer stemness and proposes CIC as a potential regulator of stem cell maintenance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CIC suppresses self-renewal capability in breast cancer cells.
Fig. 2: CIC regulates BCSC-like features.
Fig. 3: Deficiency of CIC relieves repression of ETV4 and ETV5 expression in breast cancer cells.
Fig. 4: ETV4 and ETV5 enhance BCSC-like properties.
Fig. 5: CIC deficiency-mediated promotion of BCSC-like features is due to derepression of ETV4 and ETV5.
Fig. 6: SOX2 is a direct target of CIC in MCF-7 cells.

Similar content being viewed by others

References

  1. Jimenez G, Shvartsman SY, Paroush Z. The Capicua repressor-a general sensor of RTK signaling in development and disease. J Cell Sci. 2012;125:1383–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Fores M, Simon-Carrasco L, Ajuria L, Samper N, Gonzalez-Crespo S, Drosten M, et al. A new mode of DNA binding distinguishes Capicua from other HMG-box factors and explains its mutation patterns in cancer. PLoS Genet. 2017;13:e1006622.

    PubMed  PubMed Central  Google Scholar 

  3. Lee Y, Fryer JD, Kang H, Crespo-Barreto J, Bowman AB, Gao Y, et al. ATXN1 protein family and CIC regulate extracellular matrix remodeling and lung alveolarization. Dev Cell. 2011;21:746–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim E, Park S, Choi N, Lee J, Yoe J, Kim S, et al. Deficiency of Capicua disrupts bile acid homeostasis. Sci Rep. 2015;5:8272.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lu HC, Tan Q, Rousseaux MW, Wang W, Kim JY, Richman R, et al. Disruption of the ATXN1-CIC complex causes a spectrum of neurobehavioral phenotypes in mice and humans. Nat Genet. 2017;49:527–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Simon-Carrasco L, Grana O, Salmon M, Jacob HKC, Gutierrez A, Jimenez G, et al. Inactivation of Capicua in adult mice causes T-cell lymphoblastic lymphoma. Genes Dev. 2017;31:1456–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Park S, Park J, Kim E, Lee Y. The Capicua/ETS translocation variant 5 axis regulates liver-resident memory CD8(+) T-cell development and the pathogenesis of liver injury. Hepatology. 2019;70:358–71.

    CAS  PubMed  Google Scholar 

  8. Park S, Lee S, Lee CG, Park GY, Hong H, Lee JS, et al. Capicua deficiency induces autoimmunity and promotes follicular helper T cell differentiation via derepression of ETV5. Nat Commun. 2017;8:16037.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yip S, Butterfield YS, Morozova O, Chittaranjan S, Blough MD, An J, et al. Concurrent CIC mutations, IDH mutations, and 1p/19q loss distinguish oligodendrogliomas from other cancers. J Pathol. 2012;226:7–16.

    CAS  PubMed  Google Scholar 

  10. Kim E, Kim D, Lee J-S, Yoe J, Park J, Kim C-J, et al. Capicua suppresses hepatocellular carcinoma progression by controlling the ETV4–MMP1 axis. Hepatology. 2018;67:2287–301.

    CAS  PubMed  Google Scholar 

  11. Choi N, Park J, Lee JS, Yoe J, Park GY, Kim E, et al. miR-93/miR-106b/miR-375-CIC-CRABP1: a novel regulatory axis in prostate cancer progression. Oncotarget. 2015;6:23533–47.

    PubMed  PubMed Central  Google Scholar 

  12. Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM, et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature. 2010;466:869.

    CAS  PubMed  Google Scholar 

  13. Lee J-S, Kim E, Lee J, Kim D, Kim H, Kim C-J, et al. Capicua suppresses colorectal cancer progression via repression of ETV4 expression. Cancer Cell Int. 2020;20:42.

    PubMed  PubMed Central  Google Scholar 

  14. Kawamura-Saito M, Yamazaki Y, Kaneko K, Kawaguchi N, Kanda H, Mukai H, et al. Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t(4;19)(q35;q13) translocation. Hum Mol Genet. 2006;15:2125–37.

    CAS  PubMed  Google Scholar 

  15. Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534:47.

    Article  CAS  Google Scholar 

  16. Lobo NA, Shimono Y, Qian D, Clarke MF. The Biology of Cancer Stem Cells. Annu Rev Cell Dev Biol. 2007;23:675–99.

    CAS  PubMed  Google Scholar 

  17. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5:275–84.

    CAS  PubMed  Google Scholar 

  18. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458:780.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005;65:5506–11.

    CAS  PubMed  Google Scholar 

  20. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu M-F, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. JNCI. 2008;100:672–9.

    CAS  PubMed  Google Scholar 

  21. Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B, et al. Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res. 2010;16:45–55.

    CAS  PubMed  Google Scholar 

  22. Tanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y, Taguchi T, et al. Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res. 2009;15:4234–41.

    CAS  PubMed  Google Scholar 

  23. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem cell Rep. 2014;2:78–91.

    CAS  Google Scholar 

  25. Okimoto RA, Breitenbuecher F, Olivas VR, Wu W, Gini B, Hofree M, et al. Inactivation of Capicua drives cancer metastasis. Nat Genet. 2017;49:87–96.

    CAS  PubMed  Google Scholar 

  26. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al. Cancer stem cells-perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66:9339–44.

    CAS  PubMed  Google Scholar 

  27. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100:3983–8.

    CAS  PubMed  Google Scholar 

  28. Hess DA, Wirthlin L, Craft TP, Herrbrich PE, Hohm SA, Lahey R, et al. Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood. 2006;107:2162–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Patel M, Lu L, Zander DS, Sreerama L, Coco D, Moreb JS. ALDH1A1 and ALDH3A1 expression in lung cancers: Correlation with histologic type and potential precursors. Lung Cancer. 2008;59:340–9.

    PubMed  Google Scholar 

  30. Hyun K-A, Koo G-B, Han H, Sohn J, Choi W, Kim S-I, et al. Epithelial-to-mesenchymal transition leads to loss of EpCAM and different physical properties in circulating tumor cells from metastatic breast cancer. Oncotarget. 2016;7:24677–87.

    PubMed  PubMed Central  Google Scholar 

  31. Colacino JA, Azizi E, Brooks MD, Harouaka R, Fouladdel S, McDermott SP, et al. Heterogeneity of human breast stem and progenitor cells as revealed by transcriptional profiling. Stem Cell Rep. 2018;10:1596–609.

    CAS  Google Scholar 

  32. Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta. 2014;1840:2506–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10:9–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. LeBlanc VG, Firme M, Song J, Chan SY, Lee MH, Yip S, et al. Comparative transcriptome analysis of isogenic cell line models and primary cancers links capicua (CIC) loss to activation of the MAPK signalling cascade. J Pathol. 2017;242:206–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tan Q, Brunetti L, Rousseaux MWC, Lu HC, Wan YW, Revelli JP, et al. Loss of Capicua alters early T cell development and predisposes mice to T cell lymphoblastic leukemia/lymphoma. Proc Natl Acad Sci USA. 2018;115:E1511–9.

    CAS  PubMed  Google Scholar 

  36. Wong D, Lounsbury K, Lum A, Song J, Chan S, LeBlanc V, et al. Transcriptomic analysis of CIC and ATXN1L reveal a functional relationship exploited by cancer. Oncogene. 2019;38:273–90.

    CAS  PubMed  Google Scholar 

  37. Eleveld TF, Schild L, Koster J, Zwijnenburg DA, Alles LK, Ebus ME, et al. RAS-MAPK pathway-driven tumor progression is associated with loss of cic and other genomic aberrations in neuroblastoma. Cancer Res. 2018;78:6297–307.

    CAS  PubMed  Google Scholar 

  38. Kurpios NA, Sabolic NA, Shepherd TG, Fidalgo GM, Hassell JA. Function of PEA3 Ets transcription factors in mammary gland development and oncogenesis. J Mammary Gland Biol Neoplasia. 2003;8:177–90.

    PubMed  Google Scholar 

  39. Yuan Z-Y, Dai T, Wang S-S, Peng R-J, Li X-H, Qin T, et al. Overexpression of ETV4 protein in triple-negative breast cancer is associated with a higher risk of distant metastasis. Onco Targets Ther. 2014;7:1733–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bieche I, Tozlu S, Girault I, Onody P, Driouch K, Vidaud M, et al. Expression of PEA3/E1AF/ETV4, an Ets-related transcription factor, in breast tumors: positive links to MMP2, NRG1 and CGB expression. Carcinogenesis. 2004;25:405–11.

    CAS  PubMed  Google Scholar 

  41. Chotteau-Lelievre A, Revillion F, Lhotellier V, Hornez L, Desbiens X, Cabaret V, et al. Prognostic value of ERM gene expression in human primary breast cancers. Clin Cancer Res. 2004;10:7297–303.

    CAS  PubMed  Google Scholar 

  42. Akagi T, Kuure S, Uranishi K, Koide H, Costantini F, Yokota T. ETS-related transcription factors ETV4 and ETV5 are involved in proliferation and induction of differentiation-associated genes in embryonic stem (ES) cells. J Biol Chem. 2015;290:22460–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Leis O, Eguiara A, Lopez-Arribillaga E, Alberdi MJ, Hernandez-Garcia S, Elorriaga K, et al. Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene. 2011;31:1354.

    PubMed  Google Scholar 

  44. Graham C, Chilton-MacNeill S, Zielenska M, Somers GR. The CIC-DUX4 fusion transcript is present in a subgroup of pediatric primitive round cell sarcomas. Hum Pathol. 2012;43:180–9.

    CAS  PubMed  Google Scholar 

  45. Oh S, Shin S, Janknecht R. ETV1, 4 and 5: an oncogenic subfamily of ETS transcription factors. Biochim Biophys Acta. 2012;1826:1–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Firlej V, Ladam F, Brysbaert G, Dumont P, Fuks F, de Launoit Y, et al. Reduced tumorigenesis in mouse mammary cancer cells following inhibition of Pea3- or Erm-dependent transcription. J Cell Sci. 2008;121:3393–402.

    CAS  PubMed  Google Scholar 

  47. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 2008;40:499.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ahmad ST, Rogers AD, Chen MJ, Dixit R, Adnani L, Frankiw LS, et al. Regulation of neural stem cell fate by the transcriptional repressor Capicua. 2018. https://doi.org/10.1101/335984.

  49. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol. 2007;9:625.

    CAS  PubMed  Google Scholar 

  51. Hu Y, Smyth GK. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods. 2009;347:70–8.

    CAS  PubMed  Google Scholar 

  52. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Google Scholar 

  53. Han SK, Lee D, Lee H, Kim D, Son HG, Yang J-S, et al. OASIS 2: online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research. Oncotarget. 2016;7:56147–52.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Lee lab members for helpful discussions on this study as well as helping to conduct the experiments. This work was supported by grants from the National Research Foundation (NRF) of Korea (2017R1A5A1015366 and 2018R1A2B2004416 to YL). JY and DK were supported by the BK21 Plus Program (Program of Bio-Molecular Function, POSTECH).

Author information

Authors and Affiliations

Authors

Contributions

JY and YL designed the study. JY performed the experiments. DK and SK analyzed the TCGA datasets. JY wrote and YL edited the manuscript.

Corresponding author

Correspondence to Yoontae Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoe, J., Kim, D., Kim, S. et al. Capicua restricts cancer stem cell-like properties in breast cancer cells. Oncogene 39, 3489–3506 (2020). https://doi.org/10.1038/s41388-020-1230-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1230-7

This article is cited by

Search

Quick links