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Abstract
Activation of the Hedgehog (Hh) signaling pathway by mutations within its components drives the growth of several
cancers. However, the role of Hh pathway activation in lung cancers has been controversial. Here, we demonstrate that the
canonical Hh signaling pathway is activated in lung stroma by Hh ligands secreted from transformed lung epithelia. Genetic
deletion of Shh, the primary Hh ligand expressed in the lung, in KrasG12D/+;Trp53fl/fl autochthonous murine lung
adenocarcinoma had no effect on survival. Early abrogation of the pathway by an anti-SHH/IHH antibody 5E1 led to
significantly worse survival with increased tumor and metastatic burden. Loss of IHH, another Hh ligand, by in vivo
CRISPR led to more aggressive tumor growth suggesting that IHH, rather than SHH, activates the pathway in stroma
to drive its tumor suppressive effects—a novel role for IHH in the lung. Tumors from mice treated with 5E1 had decreased
blood vessel density and increased DNA damage suggestive of reactive oxygen species (ROS) activity. Treatment of
KrasG12D/+;Trp53fl/fl mice with 5E1 and N-acetylcysteine, as a ROS scavenger, decreased tumor DNA damage, inhibited
tumor growth and prolonged mouse survival. Thus, IHH induces stromal activation of the canonical Hh signaling pathway to
suppress tumor growth and metastases, in part, by limiting ROS activity.

Introduction

Lung cancer is the leading cause of cancer-related mortality in
the U.S. and the world [1] with 5-year survival of <5% for
patients with metastatic disease [2]. Non-small cell lung cancer
(NSCLC) accounts for ~85% of lung cancers, of which, ade-
nocarcinoma is the most common subtype of NSCLC (http://
seer.cancer.gov/csr/1975_2007/results_merged/sect_15_lung_
bronchus.pdf). KRAS mutations are the most common onco-
genic driver mutations and occur in ~30% of lung adeno-
carcinoma (LAD) [3]. Currently, specific targeted therapies for
mutant KRAS LAD are not available in the clinic.

The Hedgehog (Hh) signaling pathway is critical for
embryonic development, tissue homeostasis, and cancer [4].
The pathway primarily operates in a paracrine manner in
which a secreted Hh ligand (Sonic Hh (SHH), Indian Hh
(IHH), and Desert Hh (DHH) in mammals) binds to Patched
(PTCH), a 12-pass transmembrane protein, to relieve its
basal inhibition of Smoothened (SMO), a seven-pass
transmembrane protein. SMO activation leads to activa-
tion and nuclear localization of the glioma-associated
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oncogene 2 (GLI2) transcription factor to initiate the tran-
scription of target genes, including PTCH, glioma-
associated oncogene 1 (GLI1), and Hh interacting protein
(HHIP) [4].

Aberrant activation of the Hh signaling pathway by
mutations in pathway components such as PTCH, SUFU,
SMO, and amplifications of GLI1 and GLI2 drive tumor
growth in basal cell carcinoma (BCC) [5], medulloblastoma
[6], keratocystic odontogenic tumors [7, 8], meningioma
[9–11], and ameloblastoma [12]. Vismodegib [13], sonid-
geib [14], and glasdegib [15], potent SMO antagonists, have
been approved by the FDA for clinical use [16–18].

Mutations of Hh pathway components are rare in
sporadic epithelial tumors of endodermal origin such as
lung, pancreas, gut and prostate cancers. It was proposed
that these cancers recapitulated development by secreting
Hh ligands from the tumor epithelia to activate the pathway
in stromal cells that, in turn, secreted factors instrumental
for tumor initiation and growth [19]. However, recent data
suggest that paracrine activation of stroma by Hh ligands
promotes fibroblast expansion and restrains tumor growth
early in the tumorigenic process. Inhibition of stromal
pathway activation led to accelerated tumor growth with
more aggressive, higher grade tumors [20–25].

In lung cancers, a variety of roles for the Hh signaling
pathway has been reported. In autochthonous mouse models
of small cell lung cancer (SCLC), overexpression of SHH or
SMOM2, a constitutively active mutant, in Rb−/−;Trp53−/−

cancer cells promoted tumor proliferation [26, 27], loss of
SMO led to significantly decreased tumor formation, and
treatment with sonidegib inhibited tumor growth of
chemotherapy-resistant SCLC in vivo [26]. However, a
phase III clinical trial showed no benefit of adding vismo-
degib to standard chemotherapy in treatment-naïve SCLC
patients [28]. For NSCLC, distinct modes of action have
been reported for the Hh signaling pathway. In lung squa-
mous cell carcinoma (LSCC) tumor-spheres [29], SOX2
activation induced upregulation of Hh acyltransferase
(HHAT) [30], a critical component that palmitoylates Hh
ligands, and induced autocrine pathway activation to drive
growth of LSCC tumor-spheres but not bulk LSCC cells nor
LAD tumor-spheres [29]. Alternatively, in PIK3CA-ampli-
fied LSCC, PI3K-mTOR pathway activation led to non-
canonical GLI1 expression independent of the Hh pathway
[31]. GLI1 activation drove LSCC growth and treatment
with combinatorial PI3K and GLI1 antagonists induced
tumor regression in vivo [31]. In LAD tumor-spheres and
cell lines, paracrine SHH from LAD epithelia activated the
pathway in stroma to express VEGF that in turn, bound to
NRP2 receptor to activate the MAPK pathway and express
GLI1 in a non-canonical manner [32]. Given these varied
results of the pathway’s role and modes of action in lung
cancers and other solid tumors, we tested the role of

paracrine Hh pathway activation in LAD tumorigenesis and
growth in autochthonous mutant KrasG12D/+;Trp53fl/fl

mouse model of LAD.

Results

SHH ligand is expressed in lung adenocarcinoma
and activates stromal Hh pathway by a paracrine
mechanism

We evaluated the impact of SHH expression on LAD
patients as SHH is the primary Hh ligand critical for lung
development [33] and adult lung airway homeostasis [34].
SHH expression and activity has also been reported in lung
cancers [26, 27, 30, 32, 35]. We assessed the impact of high
SHH mRNA expression in LAD patients in the
Kaplan–Meier Plotter (KM-Plotter; [36]) database that
aggregates Affymetrix microarray mRNA expression data
with clinical annotation. From 720 LAD patients and using
median expression as the cutoff, a univariate Cox regression
analysis of high SHH mRNA expression significantly cor-
related with worse overall survival (P= 0.0006; Fig. 1a) and
progression-free survival (P= 0.044; Fig. 1b). These results
were corroborated when stage, gender, and smoking history
were accounted for in multivariate analyses for overall sur-
vival (Supplementary Fig. 1a) but not in progression-free
survival (Supplementary Fig. 1b). We then surveyed 34
human LAD cell lines for Hh ligand expression by qPCR
(Fig. 1c). Mutant KRAS cell lines were sought as mutant
KRAS has been reported to upregulate SHH expression [37].
The majority of high Hh ligand expressing cell lines, defined
as >4× expression of normal bronchial epithelial HBEC7-
KT cells, also expressed mutant KRAS (Fig. 1c). H23,
H2887, HCC44, and H2258 LAD cells expressed high
levels of SHH protein, whereas H441 and H3122 expressed
low levels of SHH protein as measured by immunoblot
(Fig. 1d), consistent with qPCR results (Fig. 1c).

To test if SHH protein was secreted from LAD cells and
could activate the Hh signaling pathway, we co-cultured
three cell lines with the highest level of SHH (from Fig. 1c,
d) with Hh-pathway responsive Shh-Light2 mouse
embryonic fibroblasts that contain an 8×-GLI binding site-
firefly luciferase reporter [38]. Treatment of Shh-Light2
cells alone with SHHN conditioned medium (CM) [39]
induced high levels of Hh pathway activity that was sup-
pressed by KAAD-cyclopamine 200 nM [40], a potent
SMO antagonist, and 5E1 10 μg/ml, a blocking monoclonal
antibody that binds to SHH and IHH [41, 42] (Fig. 1e). Co-
culture of high SHH-expressing cells (H2887, H23, and
HCC44) with Shh-Light2 cells, but without addition of
exogenous SHH, resulted in potent activation of the path-
way in Shh-Light2 cells, compared with normal airway
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epithelial HBEC7-KT cells (Fig. 1e). Treatment of these co-
cultured cells with KAAD-cyclopamine and 5E1 inhibited
Hh pathway activation in Shh-Light2 cells (Fig. 1e). In

contrast, low SHH-expressing H3122 cells did not sig-
nificantly induce Hh pathway activation in Shh-Light2 cells.
To test for autocrine activation of the Hh signaling pathway
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in tumor cells, we treated high SHH-expressing H2887 and
HCC44 cells (Fig. 1c, d) with recombinant SHH (rSHH)
1 μg/ml, 5E1 10 μg/ml or KAAD-cyclopamine 300 nM and
monitored the mRNA transcription of reported pathway
target genes GLI1, PTCH1, HHIP, BMP4, BMP7, MYCN,
CCND1, SOX9, and BMI1 by qPCR after treatment. In both
H2887 (Fig. 1f–h, Supplementary Fig. 2) and HCC44
(Supplementary Fig. 3), addition of rSHH did not increase
mRNA transcription of target genes nor did treatment with
5E1 or KAAD-cyclopamine substantially decrease mRNA
transcription, defined as >50% decrease, across the panel of
the tested target genes compared with DMSO control. These
results are in contrast with Hh-responsive MLg murine lung
fibroblasts [35] (Supplementary Fig. 4) suggesting that the
tumor cells did not respond to secreted SHH in an autocrine
manner. Interestingly, H2887 and HCC44 cells expressed
higher GLI1 mRNA and other pathway target genes than the
normal bronchial epithelial HBEC7-KT cells (Fig. 1f–h,
Supplementary Fig. 2) suggesting that the genes may be
upregulated by a Hh-independent mechanism. Taken toge-
ther, the results of the co-culture (Fig. 1e) and autocrine
(Fig. 1f–h, Supplementary Figs. 2 and 3) experiments
suggested that SHH from LAD cells activate the pathway in
stromal cells in a paracrine manner without autocrine acti-
vation in tumor cells.

SHH does not affect lung adenocarcinoma growth
in vivo

We next sought to test the role of stromal Hh pathway in
lung tumor development. As reliable anti-SHH antibodies
for immunohistochemistry (IHC) were not commercially

available, we tested for Shh mRNA expression by in situ
hybridization. We validated Shh mRNA probes in the
neural tube of E11.5 mouse embryos, where SHH is highly
expressed in the notochord [43, 44] and floor plate [45, 46]
(Supplementary Fig. 5a). Ten weeks after infection of
KrasLox-Stop-Lox-G12D/+;Trp53fl/fl (KP) mice [47] with
adenovirus-expressing cre recombinase (adeno-cre) by
intranasal inhalation, LAD expressed Shh mRNA as shown
by in situ hybridization (Fig. 2a, Supplementary Fig. 5b).
We further verified the expression of Shh mRNA specifi-
cally in primary KP transformed lung epithelia. Lungs from
uninfected KPmice and KP;Rosa26Loxp-mtdTomato-Stop-Loxp-mGFP/+

(KPmTmG) mice [48], a strain that conditionally switches
from constitutive tdTomato expression to GFP expression
and initiates LAD when exposed to cre recombinase (Sup-
plementary Fig. 6a), infected with adeno-cre were enzy-
matically dissociated into single cells. Lung epithelial cells
were isolated using FACS–EpCAM+, GFP+ (adeno-cre
infected cells) for KPmTmG epithelia (Supplementary Fig.
6b), and CD31− (endothelial cell antigen), CD45− (leu-
kocyte antigen), EpCAM+ (epithelial cell antigen) for
uninfected KP epithelia (Supplementary Fig. 6c)—and Shh
mRNA measured by qPCR. Infected KPmTmG lung epi-
thelia expressed higher levels of Shh mRNA than wild-type
lung epithelia of uninfected KP mice (Fig. 2b). After
identifying the optimal dose of 5E1 for in vivo studies using
a Hh-dependent hair regrowth study [49, 50] (Supplemen-
tary Fig. 7), KPmTmG mice were treated with IgG1 control
or 5E1 10 mg/kg by intraperitoneal (i.p.) injection twice per
week for four weeks starting 2 weeks after adeno-cre
infection and transformed epithelial cells and stromal cells
were isolated by FACS (Supplementary Fig. 8). Shh mRNA
expression was ~4 orders of magnitude higher in trans-
formed lung epithelial cells than in stromal cells, as mea-
sured by qPCR (Fig. 2c). Gli1 mRNA levels, as a measure
of response to SHH ligand, were ~4 orders of magnitude
higher in stromal cells than in transformed epithelial cells
(Fig. 2d). Furthermore, stromal cells from KPmTmG mice
treated with 5E1 showed ~90% decrease in Gli1 mRNA
transcription compared with stromal cells treated with IgG1

control in contrast to FACS-sorted epithelial cells (Fig. 2d),
suggesting that the Hh signaling pathway is activated pri-
marily in stroma by a paracrine mechanism with no auto-
crine activation in tumor epithelia. mRNA expression of Hh
pathway target genes in 808-T3 cells, a murine KP LAD
cell line that expresses SHH (Supplementary Fig. 9), were
not significantly increased when treated with rSHH or sig-
nificantly diminished when treated with pathway inhibitors,
5E1 or KAAD-cyclopamine (Fig. 2e–g, Supplementary Fig.
10). To identify the pathway-responsive stromal cells, we
crossed KP mice with the Gli1Lacz/+ reporter strain [51] that
contains the LacZ gene with a nuclear localization signal
sequence knocked into the Gli1 locus to generate the KP;

Fig. 1 SHH in human lung adenocarcinoma. a, b Survival analyses
of lung adenocarcinoma patients with high- and low-SHH mRNA
expression from Kaplan–Meier Plotter database [36]. n= 720 patients.
High and low mRNA expression is relative to median expression.
a Kaplan–Meier plots by univariate analysis of overall survival (P=
0.0006) and (b) progression-free survival (P= 0.044) of lung adeno-
carcinoma patients are shown. c Expression of SHH mRNA as mea-
sured by qPCR relative to a normal bronchial epithelial cell line
(HBEC7-KT). Dashed line represents 4× expression relative to
HBEC7-KT. d Immunoblot of active N-terminal SHH of high and low
SHH-expressing lung cancer cell lines from c. e Relative Hh pathway
activity of Shh-Light2 fibroblasts with an 8×-GLI-luciferase reporter is
shown. Shh-Light2 cells were co-cultured with low SHH-expressing
HBEC7-KT normal lung epithelial cell line, low SHH-expressing
H3122 LAD cell line, and high SHH-expressing H23, H2887 and
HCC44 LAD cell lines. Cell lines were treated with control vehicle,
KAAD-cyclopamine 200 nM, and 5E1 10 μg/ml. f–h Expression of
Hh-pathway target genes in high SHH mRNA expressing H2887cell
line. H2887 cells were treated with control vehicle (DMSO), recom-
binant SHH (rSHH) 1 μg/ml, KAAD-cyclopamine 300 nM, or 5E1
10 μg/ml. Expression of (f) GLI1, (g) PTCH1, and (h) HHIP were
measured by qPCR relative to HBEC7-KT cell line. All qPCR data
represent mean of triplicates ± SD. *P < 0.05, **P < 0.01, ***P <
0.001, ****P < 0.0001. ns not significant.
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Gli1Lacz/+ strain. Nuclear expression of β-galactosidase was
diminished in KP;Gli1Lacz/+ murine lungs treated with 5E1
10 μg/ml twice per week for 2 weeks starting 2 weeks

after adeno-cre infection compared with those treated with
IgG1 control (Fig. 2h, Supplementary Fig. 11). Nuclear
β-galactosidase co-localized with fibroblast (PDGRα) and
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myobfibroblast (αSMA) markers but not with perivascular
smooth muscle (αSMA+, PDGRα−), lung epithelial cells
(E-Cadherin+), nor endothelial cells (CD31+) (Fig. 2i,
Supplementary Fig. 12) suggesting that fibroblasts and
myofibroblasts are the primary cells that respond to Hh
ligands. We next tested the requirement of stromal Hh
pathway activity for LAD tumorigenesis by crossbreeding
KP with Shhfl/fl [52] mice to generate KP, KP;Shhfl/+, and
KP;Shhfl/fl strains to induce LAD with wild-type (wt), het-
erozygous, and homozygous loss of SHH expression. Sur-
prisingly, KP, KP;Shhfl/+, and KP;Shhfl/fl mice did not show
any differences in survival after LAD induction with adeno-
cre (Fig. 2j). To verify that Shh was indeed deleted in KP;
Shhfl/fl mice, we isolated EpCAM+;GFP+ infected lung
epithelial cells by FACS from KPmTmG and KPmTmG;

Shhfl/fl mice 3 weeks after adeno-cre infection, analogous to
Supplementary Fig. 6b, and tested for Shh mRNA expres-
sion by qPCR. Indeed, KP;Shhfl/fl infected epithelial cells
expressed Shh mRNA ~6 orders of magnitude less than KP
epithelial cells (Fig. 2k), suggesting that Shh was indeed
knocked out. Furthermore, no significant differences in
tumor size were seen in the lungs of KP, KP;Shhfl/+, and
KP;Shhfl/fl 10 weeks after infection (Fig. 2l, m). Taken
together, these results suggest that SHH may not play a role
in mutant Kras LAD tumorigenesis and progression.

Activation of the Hh pathway in stroma prolongs
survival by restraining tumor growth and metastasis
in vivo

To further examine the effect of paracrine Hh pathway
activity in lung tumorigenesis, KP mice were treated with
5E1 10mg/kg i.p. twice per week or IgG1 control starting 2
or 6 weeks after tumor initiation by adeno-cre infection
(Fig. 3a) such that the pathway was inhibited early in the
tumorigenic process (2 weeks) or once adenomas with
nuclear atypia had been established (6 weeks) [47]. KP mice
treated with 5E1 starting 2 weeks after tumor initiation had
significantly worse survival compared with IgG1 treated
control mice (Fig. 3b) in contrast to mice treated with
5E1 starting 6 weeks after adeno-cre infection (Fig. 3c).
Furthermore, KP mice treated with 5E1 at the 2 week time
point exhibited significantly higher rates of metastases
(Fig. 3d), primarily to mediastinal lymph nodes and pleura
(Fig. 3e, f). Examination of LAD tumors after 8 weeks of
5E1 treatment (10 weeks after adeno-cre infection) demon-
strated significantly larger size of tumors (Fig. 3g–i) with a
greater proportion of poorly differentiated tumors and less
well-differentiated tumors (Fig. 3j, k) compared with mice
treated with IgG1 control. Thus, pharmacologic inhibition of
stromal Hh pathway induced greater tumor burden with
greater metastases and worse survival, suggesting that stromal
Hh pathway activity restrains LAD growth and metastasis.

IHH is the predominant Hh ligand in murine mutant
Kras lung adenocarcinoma

With the disparate outcomes of genetic SHH loss (Fig. 2j, l,
m) and pharmacologic blockade by 5E1 (Fig. 3b, d–k), we
hypothesized that IHH may play a role in LAD tumor-
igenesis as 5E1 binds both SHH and IHH. We verified that
5E1 can inhibit stromal pathway activation by IHH using
Shh-Light2 cells stimulated with either recombinant IHH
(rIHH) or rSHH (Fig. 4a). Of note, there was almost no
induction of pathway activity with recombinant DHH
treatment (results are not shown). As reliable antibodies for
IHH IHC and immunoblots were not commercially avail-
able, we turned to RNA in situ hybridization. KP LAD

Fig. 2 SHH does not affect tumor growth and survival in vivo.
a Shh mRNA expression is shown in lung tumor tissues generated in
K-rasG12D/+;p53fl/fl (KP) mouse by RNA in situ hybridization. Red
puncta indicate Shh mRNA. Inset shows an enlarged region for better
clarity. Scale bar is 50 µm. b EpCAM+; GFP+ lung epithelial cells of
KPmTmG mice 3 weeks after adeno-cre recombinase (adeno-cre)
infection (‘KP’ in panel) and CD31−, CD45−, EpCAM+ lung epi-
thelial cells of uninfected KP mice (‘Wt’ in panel) were FACS-sorted
and Shh mRNA expression was analyzed by qPCR. The data represent
mean of duplicates ± s.e.m (n= 4 lung lobes from 2 mice) for adeno-
cre infected KPmTmG mice and mean of triplicates ± s.e.m (n= 4 lung
lobes from 4 mice) for uninfected KP mice. ****P < 0.0001. c, d
CD31−, CD45−, EpCAM+, GFP+ lung epithelial cells and CD31−,
CD45−, EpCAM−, GFP− lung stromal cells of KPmTmG mice
treated with 5E1 or IgG1 for 4 weeks starting 2 weeks after adeno-cre
infection were FACS-sorted and (c) Shh and (d) Gli1 mRNA
expression were analyzed by qPCR. The data represent mean of tri-
plicates ± s.e.m (n= 2 whole lungs from 2 mice per treatment arm).
**P < 0.01, ***P < 0.001. ns not significant. e-g KP lung adeno-
carcinoma 808-T3 cells were treated with rSHH 1 μg/ml, 5E1 antibody
10 μg/ml, or KAAD-cyclopamine 300 nM and then mRNA expression
of (e) Gli1, (f) Ptch1, (g) Hhip were measured by qPCR. The data
represent mean of triplicates ± s.d.**P < 0.01. ns not significant.
h Lung sections from KP;Gli1LacZ/+ mouse treated with 5E1 or IgG1

for 2 weeks starting 2 weeks after adeno-cre infection were stained for
β-galactosidase (green) that represents GLI1. Insets show enlargement
of boxed areas for better clarity. Scale bars are 50 µm. i Lung sections
from KP;Gli1LacZ/+ mouse (4 weeks after adeno-cre infection) were
co-stained for β-galactosidase (green) and PDGFRα, αSMA, E-Cad-
herin, or CD31 (Red). Tissue sections used for PDGFRα and αSMA
stains are ~20 µm apart from each other. Insets show enlargement of
boxed areas for better clarity. Scale bars are 50 µm. j Survival curves
of KP;Shh+/+, KP;Shhfl/+, and KP;Shhfl/fl mice after infection with
adeno-cre are shown. KP;Shh+/+ n= 17, KP;Shhfl/+ n= 18, KP;Shhfl/fl

n= 17. k EpCAM+ ;GFP+ lung epithelial cells of KPmTmG;ShhWT

and KPmTmG;Shhfl/fl mice 3 weeks after adeno-cre infection were
FACS sorted and Shh mRNA levels were measured by qPCR. The
data represent mean of duplicates+ /− s.e.m. n= 4 lung lobes from 2
mice per treatment arm. The expression levels were normalized to
ShhWT. ****P < 0.0001. l Quantification of individual tumor area is
shown from mice 10 weeks after adeno-cre infection. Data represent
mean of KP;Shh+/+ n= 162, KP;Shhfl/+ n= 206, KP;Shhfl/fl n= 137
tumor ± s.e.m.m H&E images of left lung from KP;Shh+/+, KP;Shhfl/+,
and KP;Shhfl/fl mice 10 weeks after adeno-cre infection from l. Scale
bars are 2 µm.
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10 weeks after adeno-cre infection expressed Ihh mRNA
(Fig. 4b). To further verify that IHH is expressed by
transformed lung epithelial cells, EpCAM+,GFP+ epithelial

cells were isolated by FACS (analogous to Supplementary
Fig. 6b) from KPmTmG mice 6 weeks after adeno-cre
infection. The sorted epithelial cells show a striking increase
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pathway activation worsens
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a Schematic diagram of KP mice
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or IgG1. b, c Survival curves are
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5E1 10 mg/kg twice per week or
corresponding IgG1 dose
starting, (b) 2 weeks (5E1 n=
18, IgG1 n= 18, ***P=
0.0002) and c 6 weeks (5E1 n=
10, IgG1 n= 10, P= 0.34, ns
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administration of adeno-cre.
d Fraction of mice with grossly
visible metastases from
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Representative H&E images of
metastatic tumors in (e) a
mediastinal lymph node and in
(f) pleura invading the chest
wall. Scale bars are 500 µm. g–j
KP mice were treated with 5E1
10 mg/kg twice per week or
corresponding IgG1 dose for
8 weeks starting 2 weeks after
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g Quantification of individual
tumor area is shown. Data
represent mean of IgG1 (n= 195
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± s.e.m. **P < 0.01. h, i H&E
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shown of KP LAD 10 weeks
after adeno-cre infection. Data
represent mean of IgG1 (n= 101
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tumors). k Representative H&E
images of poor, moderate, and
well differentiated tumors are
shown. Scale bars are 100 µm.
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in Ihh mRNA expression compared with Shh mRNA as
measured by qPCR (Fig. 4c). In FACS-sorted lung epithe-
lial and stromal cells (analogous to Supplementary Fig. 8),

Ihh mRNA was expressed primarily in lung epithelial cells
(Fig. 4d) with stromal cells responding to Hh ligands
(Fig. 2d). Ihh mRNA was also expressed significantly
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higher than Shh mRNA in 808-T3 murine KP LAD cell line
(Fig. 4e). Addition of more rIHH to 808-T3 cells did not
modulate transcription of pathway target genes (Fig. 4f,
Supplementary Fig. 13) in contrast to MLg lung fibroblasts
(Supplementary Fig. 14), further suggesting that there is no
autocrine activation of the Hh signaling pathway in tumor
cells. To genetically test the requirement of IHH to suppress
LAD tumorigenesis and growth, we used the pSECC len-
tiviral in vivo CRISPR/Cas9 system [53] that encodes for
Cre recombinase to initiate tumorigenesis, Cas9 for gene
editing, and sgRNA against the gene of interest. Several
candidate sgRNA against Ihh (sgIhh) were tested with
SURVEYOR assay (Supplementary Fig. 15a) and the
sgRNA sequence (#2, hereafter just sgIhh) with the greatest
percentage of digested bands was chosen for further study.
We tested pSECC-Ihh for loss of Ihh mRNA expression by
qPCR in 808-T3 cells with high Ihh mRNA expression
(Fig. 4e). Approximately half of the clones from 808-T3
cell lines transfected with the pSECC-Ihh showed

substantial decreases in Ihh mRNA expression compared
with pSECC-GFP control (Supplementary Fig. 15b). Sub-
sequently, KP;Rosa26LSL-fLuc/+ (KPL) mice were infected
with lentiviral particles containing pSECC-Ihh or pSECC-
GFP via intratracheal administration and tumor growth
monitored by bioluminescence imaging (BLI) (Fig. 4g).
Infection with pSECC-Ihh induced significant tumor growth
compared with pSECC-GFP control 18 weeks after infec-
tion (Fig. 4h, i). KPL mice infected with pSECC-GFP
eventually developed tumors that were detected by BLI at
22–26 weeks after infection (Fig. 4h). Examination of
tumors at 18 weeks after pSECC-Ihh or pSECC-GFP
infection from a separate experiment demonstrated greater
tumor burden with loss of IHH (Fig. 4j, k).

IHH in human lung adenocarcinoma

We next tested for IHH mRNA by in situ hybridization in
human LAD samples in mutant and wild-type KRAS and
TP53 samples. Two of the three mutant KRAS;TP53 sam-
ples expressed IHH mRNA in malignant cells (Fig. 5a,
Supplementary Fig. 16), whereas only one of the six wild-
type samples expressed IHH mRNA (Fig. 5b, Supplemen-
tary Fig. 16). All of the IHH mRNA positive tumors had a
predominance of lepidic histology with mucinous features
(Supplementary Fig. 16). Lepidic histology has been cor-
related with less aggressive biology. The prognosis of
mucinous histology in LAD is uncertain currently [54]. Re-
examination of the 34 human LAD cell lines (Fig. 1c)
revealed only 4 lines with IHH mRNA elevated beyond four
times the normal lung epithelial line HBEC7-KT (Fig. 5c).
As most of the cell lines were generated from patients with
late stage or metastatic adenocarcinomas, the dearth of
cancer lines with upregulated IHH mRNA corroborates the
in situ results of IHH mRNA in more indolent lepidic
histologies (Fig. 5a, Supplementary Fig. 16). In high IHH
mRNA expressing H650 cells (Fig. 5c), treatment with
rIHH or pathway inhibitors, 5E1 and KAAD-cyclopamine,
did not show increase nor substantial decrease (>50%) in
mRNA transcription compared with DMSO control across
the panel of tested pathway target genes, respectively
(Supplementary Fig. 17). These data, along with those of
high SHH/IHH expressing H2887 cells (Fig. 1f–h, Sup-
plementary Fig. 2) suggest that there is no autocrine acti-
vation of the pathway by IHH in human LAD cells.
Univariate Cox regression analysis of a clinically annotated
microarray database of human LAD (KM Plotter; [36])
revealed that patients with high expression of Ihh mRNA
had better overall (P= 0.0001; Fig. 5d) and progression-
free (P= 0.0069; Fig. 5e) survival compared with those
with low expression. These results remained consistent after
multivariate analyses when stage, gender, and smoking
history were considered (Fig. 5f, g), in agreement with our

Fig. 4 IHH regulates the suppression of lung adenocarcinoma.
a Hh pathway activity, as measured by 8×-GLI-luciferase reporter
relative to PBS control in Shh-Light2 reporter fibroblasts, is shown.
Shh-Light2 cells were treated with 1, 2.5, and 5 µg/ml of mouse rIHH
or rSHH in combination with 5E1 or IgG1 10 µg/ml. PBS was used as
a control vehicle for IHH or SHH. b In situ hybridization for Ihh
mRNA (left panel) and corresponding H&E image (right panel) in
LAD of KP mice are shown. Arrowheads point to regions of red
puncta that indicate Ihh mRNA. Inset shows an enlarged region for
better clarity. In situ hybridization and H&E images are ~65 µm apart.
Scale bar is 50 µm. c Shh and Ihh mRNA levels of FACS sorted lung
epithelial cells from KPmTmG mice 6 weeks after adeno-cre infection
is shown. mRNA expression was measured by qPCR. Data represent
mean of duplicate ± s.e.m. n= 4 mice. ****P < 0.0001 d CD31−,
CD45−, EpCAM+, GFP+ lung epithelial cells and CD31−, CD45−,
EpCAM−, GFP−, tdTomato+ lung stromal cells from KPmTmG mice
treated with 5E1 or IgG1 for 4 weeks starting 2 weeks after adeno-cre
infection were FACS-sorted and then Ihh mRNA expression was
analyzed by qPCR. The data represent mean of triplicates ± s.e.m. n=
2 mice per treatment arm. **P < 0.01. ns not significant. e Shh and Ihh
mRNA levels from 808-T3 cells are shown as measured by qPCR.
Data represent mean of triplicates ± s.e.m. ****P < 0.0001. f 808-T3
cells were treated with rIHH 2.5 μg/ml or control vehicle and
expression of Gli1, Ptch1, and Hhip mRNA were measured by qPCR.
The data represent mean of triplicates ± s.d. ns= not significant.
g Schematic diagram of the experiment for h and i. KP;Rosa26LSL-fLuc/+

mice were infected with 5 × 104 ifu pSECC-Ihh or pSECC-GFP and
tumor growth monitored by bioluminescence (n= 3 for each treatment
arm). h Bioluminescence images (BLI) are shown of lung tumors in
KP;Rosa26LSL-fLuc/+ 18 weeks after infection with lentiviral pSECC-
sgIhh or pSECC-sgGFP in the first row. pSECC-sgGFP mice were
continued to be monitored and the second row shows BLI of mice
22–26 weeks after pSECC-sgGFP infection. i Quantification of
luminescence intensity is shown for pSECC-sgIhh and pSECC-sgGFP
infected mice at 18 weeks (n= 3 per treatment arm). *P < 0.05.
j Schematic diagram of the experiment for k. KP;Rosa26LSL-fLuc/+ mice
were infected with 5 × 104 ifu pSECC-Ihh or pSECC-GFP and lungs
obtained at 18 weeks after infection (n= 2 mice per treatment arm).
k Representative H&E images of right upper lobes from pSECC-sgIhh
and pSECC-sgGFP infected mice at 18 weeks. Scale bars are 2 mm.
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murine LAD data (Figs. 3b and 4g–k). The data here sug-
gest that IHH is sufficient to suppress tumor initiation and
growth and that SHH is dispensable for LAD tumorigenesis.

Loss of stromal Hh pathway inhibits angiogenesis
and increases the activity of reactive oxygen species

The Hh signaling pathway has been implicated in the reg-
ulation of angiogenesis in normal tissues [55, 56] and
cancer [57, 58] through induction of angiogenic factors
including VEGFs and ANG1, 2. Examination of CD31
expression, a marker of endothelial cells, showed decreased
blood vessel density in LAD tumors treated with anti-SHH/
IHH 5E1 antibody compared with IgG1 treated tumors
(Fig. 6a, b). As the effects of stromal Hh pathway inhibition
were seen with mice when treatment was initiated 2 weeks

after adeno-cre infection (Fig. 3b, d–k), we hypothesized
that the inability of growing tumors to generate new vessels
would lead to early hypoxia and production of reactive
oxygen species (ROS) [59, 60], that in turn, would promote
tumor proliferation and growth [61–63]. We developed two
macros (“ROI_Draw” and “Nuclear_Fraction_Calculator”)
for ImageJ [64] or Fiji [65] to quantify DAB stained nuclei
of phospho-histone 2AX (γH2AX), a protein that responds
to double stranded DNA breaks and a marker of oxidative
stress [66, 67]. Nuclear_Fraction_Calculator counts DAB
stained nuclei and total nuclei in digital images of tissue
sections and calculates the fraction of IHC positive nuclei
within regions of interest (ROI; tumors in our studies) that
have been drawn interactively with ROI_Draw. With these
macros, LAD from mice treated with 5E1 showed sig-
nificantly higher fraction of nuclei stained with γH2AX than

ba

Overall survival
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Progression free survival
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Fig. 5 IHH in human lung
adenocarcinoma. a, b In situ
hybridization for IHH mRNA
(top panels) in (a) mutant KRAS
—mutant TP53 and (b) wild-
type WT KRAS and WT TP53
human LAD are shown. Brown
puncta indicate IHH mRNA.
Arrowheads indicate regions of
IHH mRNA staining in
malignant cells. Insets show
enlarged regions for better
clarity. H&E images of tumors
corresponding to ISH images
above are shown in the bottom
panels. Scale bar is 50 µm.
c Expression of IHH mRNA as
measured by qPCR relative to a
normal bronchial epithelial cell
line (HBEC7-KT). Dashed line
represents 4× expression relative
to HBEC7-KT. d–g Survival
analyses of lung
adenocarcinoma patients with
high and low IHH mRNA
expression from Kaplan–Meier
Plotter database [36]. n= 673
patients. High and low mRNA
expression is relative to median
expression. Kaplan-Meier plots
by univariate analysis of (d)
overall survival (P= 0. 0001)
and (e) progression-free survival
(P= 0.0069) of LAD patients
are shown. Multivariate analysis
of (f) overall survival and (g)
progression-free survival of
LAD patients is shown with
stage, gender, smoking history,
and Ihh mRNA expression as
variables.
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tumors from IgG1 treated mice (Fig. 6c, d), suggesting
increased DNA damage from ROS. To assess whether ROS
from stromal Hh pathway inhibition induced accelerated

tumor growth, KP mice were treated with 5E1 and N-acetyl
cysteine (NAC), as a scavenger of ROS and precursor to the
antioxidant, glutathione (GSH) (Fig. 6e). Treatment with
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NAC and 5E1 prolonged survival compared with 5E1 and
vehicle control (Fig. 6f), whereas treatment with NAC and
IgG1 did not affect survival (Fig. 6g). Furthermore, the
median survival of 5E1 with NAC approximated that of
IgG1 with vehicle control (Supplementary Fig. 18). Inter-
estingly, the rate of metastases did not decrease when mice
were treated with 5E1 and NAC compared with 5E1 and
vehicle control (Fig. 6h). The tumor size in mice treated with
5E1 and NAC were significantly decreased compared with
mice treated with 5E1 and vehicle control 10 weeks after
adeno-cre infection (Fig. 6i, j) and corresponded to
decreased DNA damage as measured by γH2AX stained
nuclei as a marker of ROS activity (Fig. 6k, l). These data
suggest that IHH restrains tumor growth through support of
angiogenesis and limiting ROS activity early in the
tumorigenic process.

Discussion

In accordance with previous studies [20–25], paracrine Hh
activation of stroma, particularly early in the tumorigenic
process, suppresses lung tumor growth, formation of
aggressive histologies and metastases. A surprising result of
our studies was the central role of IHH, instead of SHH, to

suppress tumor growth. SHH is the dominant ligand that
regulates lung development [33], adult lung airway home-
ostasis [34], and lung cancers [26, 27, 30, 32, 35]. IHH is
expressed in the adult colon and prostate and restrains the
growth of colon [24, 68] and prostate [25] cancers. How-
ever, to our knowledge, IHH activity has not been reported
in the lung. Further studies are needed to test if IHH has a
role in the homeostasis of the adult lung epithelia or if it is
unique to lung cancers.

In our studies, loss of stromal pathway activation in KP
LAD decreased blood vessel density (Fig. 6a, b) suggesting
that the Hh signaling pathway induces angiogenesis in the
lungs consistent with reports in other organs [55, 56, 69].
However, loss of stromal Hh pathway activation in KP
pancreas ductal adenocarcinoma (PDAC) increased tumor
blood vessel density and inhibition of angiogenesis through
VEGFR2 antagonism in KP;Shhfl/fl PDACs prolonged
mouse survival [20]. Another study reported that loss of Hh
ligand co-receptors, GAS1 and BOC, in mouse embryonic
and pancreas cancer-associated fibroblasts (CAFs) led to
partial suppression of pathway response to SHH and
increased angiogenesis [70]. Loss of co-receptors GAS1,
BOC, and CDO in fibroblasts caused a more severe sup-
pression of the pathway and inhibited angiogenesis through
modulation of angiogenic ligands VEGFA, ANGPT1, 2
[70]. If stromal cells respond distinctly to SHH and IHH
ligands, then IHH may play a more prominent role in
angiogenesis in LAD than SHH due to the lower potency of
IHH (Fig. 4a) analogous to the diminished pathway
response of Gas1−/−;Boc−/−

fibroblasts in pancreatic cancer
[70]. Previous studies also have noted differences in
genomic and transcriptomic heterogeneity [71] and effec-
tors downstream of mutant Kras [72] between murine KP
LADs and PDACs. Such differences may also play a role in
the tumor microenvironment where responses to Hh ligands
may differ significantly between pancreas and lung stroma.
The distinct phenotypic outcomes of stromal Hh pathway
activation in LAD and PDAC suggest that tumor-stromal
interactions of various cancer types will need to be studied
individually and caution against broad generalizations.

ROS exhibit seemingly paradoxical effects of tumor
growth enhancement and tumor cytotoxicity depending on
their levels [73]. Oncoproteins, such as mutant KRAS and
MYC, and hypoxic states can increase cellular ROS levels
[63, 74] that enhance tumor growth [63, 75–77]. But high
levels of ROS can be cytotoxic and cancer cells upregulate
antioxidant proteins including glutathione peroxidases,
peroxiredoxins, and NRF2 to maintain ROS at optimal
levels [74]. Here, we have shown that loss of stromal
pathway activity early in the tumorigenic process increased
DNA damage as marker of ROS activity in tumor cells
(Fig. 6c, d). Reduction of ROS activity with NAC combined
with stromal pathway inhibition prolonged survival with

Fig. 6 IHH loss inhibits angiogenesis and increases activity of
reactive oxygen species. a–d KP mice were treated with 5E1 10 mg/
kg twice per week or corresponding IgG1 dose for 8 weeks starting
2 weeks after infection a Quantification of vessel density (area of
CD31 positive cells in tumor/tumor area) is shown. Data represent
mean of IgG1 (n= 155 tumors) or 5E1 (n= 169 tumors) ± s.e.m.
****P < 0.0001. b Images of lung tumors of KP mice stained for
CD31 by IHC with DAB substrate. Scale bar is 500 µm. c Fraction of
γH2AX+ nuclei (γH2AX+ nuceli per tumor/total nuclei per tumor) is
shown. Data represent the mean of IgG1 (n= 86 tumors) or 5E1 (n=
97 tumors) ± s.e.m. **P < 0.01 d Images of lung tumors of KP mice
stained for γH2AX by IHC. DAB was used as substrate. Scale bar is
100 µm. e Schematic diagram of survival study for f–h. KP mice were
infected with adeno-cre by intranasal inhalation and treated with
vehicle or N-acetyl cysteine (NAC) 200 mg/kg i.p. once per day on
days 12 and 13 after adeno-cre infection. From day 14, mice were
treated with 5E1 10 mg/kg i.p. twice per week or corresponding IgG1

dose and NAC 1 g/L supplemented in their drinking water. f Survival
curves are shown of KP mice treated with 5E1 and control vehicle (n
= 8) or NAC (n= 9). **P= 0.0031. g Survival curves of KP mice
treated with IgG1 with control vehicle (n= 8) or NAC (n= 7, P=
0.55) starting 2 weeks after infection. ns not significant. h Fraction of
mice with grossly visible metastases from experiment in f is shown.
i Quantification of individual lung tumor area of KP mice treated with
5E1 in combination with control or NAC for 8 weeks starting 2 weeks
after adeno-cre infection. Data represent the mean of Ctl (n= 64
tumors) and NAC (n= 85 tumors) ± s.e.m. *P < 0.05. j H&E images
of left lung from i. Scale bars are 2 mm. k Fraction of γH2AX+ nuclei
of tumors is shown. Data represent the mean of Ctl (n= 87 tumors)
and NAC (n= 82 tumors) ± s.e.m. *P < 0.05. l Images of lung tumors
of KP mice from (k) stained for γH2AX by IHC. DAB was used as
substrate. Scale bars are 100 µm.
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retardation of tumor growth in KP LAD (Fig. 6f, i–l). A
recent study [78] demonstrated increased metastases when
KP mice were treated with NAC. In our study, addition of
NAC to 5E1 treatment did not change the rate of metastases
in KP mice compared with 5E1 treatment (Fig. 6h) while
5E1 treatment of KP mice increased the rate of metastases
compared with control treatment (Fig. 3d–f). These results
suggest that KP mice treated with 5E1 and NAC may have
increased metastases compared with KP control mice and
are in general agreement with the observations of Wiel et al.
[78]. Further studies will be needed for direct comparisons
of adding NAC to control or 5E1 treatment in KP mice.

In bladder [23] and colon [24] cancers, BMPs secreted
from Hh-dependent stroma limit the histologic progression
of cancers. Similarly, loss of stromal Hh pathway activation
in the lung leads to higher grade tumors (Fig. 3j, k) and
murine lung fibroblasts express BMPs in response SHH
(Supplementary Fig. 4) and IHH (Supplementary Fig. 14).
Thus, loss of BMPs from lung fibroblasts may also con-
tribute to the increased growth and aggressiveness of KP
LAD with pathway inhibition.

Our studies here highlight the tumor suppressive roles of
stromal Hh pathway activation by IHH via limiting hypoxia
and ROS activity through angiogenesis and reinforce the
anti-oncogenic role of stroma early in the tumorigenic
process. Identification of factors that negatively regulate
IHH production in LAD may serve as targets of small
molecule or antibody therapeutics to enhance IHH expres-
sion and restrain tumor growth and metastases. Such ther-
apeutic strategies may be employed in early stage or locally
advanced disease prior to surgery/high dose radiation or
concurrent chemoradiation, respectively, where treatment
failure often occurs due to distant metastases. Also, identi-
fication of such factors may serve as biomarkers to deter-
mine the early stage patients that might benefit from more
aggressive therapy.

Materials and methods

Cell culture

All human LAD cell lines were obtained from the Hamon
Cancer Center Collection (UT Southwestern Medical
Center, UTSW), were DNA fingerprinted with a Power-
Plex 1.2 kit (Promega) and tested for mycoplasma using
e-Myco kit (Boca Scientific). The cell lines were gener-
ated between 1979 and 2007. Cells were maintained in
RPMI-1640 (Life Technologies) with 5% fetal bovine
serum (FBS). 808-T3 and Green-Go [53] cell lines were
kind gifts from Dr David McFadden (UTSW) and
Dr Tyler Jacks (MIT), respectively, and were maintained
in DMEM (Life Technologies) with 10% FBS. All cells

were maintained at 37 °C, with 5% CO2, and under
humidified conditions.

Drugs and reagents

5E1 antibody was expanded in our laboratory (see Sup-
plementary material and methods) and prepared in PBS.
IgG1 (InVivoMab, BE0083) was diluted in PBS. KAAD-
cyclopamine (Millipore) was prepared in DMSO. Recom-
binant SHH (C25II) (R&D Systems) and IHH (C28II)
(Genscript) were prepared in PBS containing 0.1% bovine
serum albumin (BSA). N-Acetyl-L-cysteine (NAC) was
purchased from Sigma-Aldrich and prepared in PBS for i.p.
injection or sterile tap water for supplemented drinking
water. For NAC solution, pH was adjusted to 7.4.

GLI-reporter assay

Shh-Light2 cells [38], a clonal NIH-3T3 cell line that stably
expresses 8xGLI-binding site-firefly and TK-Renilla luci-
ferase reporters, were co-cultured with LAD cell lines in 24-
well plates until confluent and then treated with KAAD-
cyclopamine (Millipore) 200 nM, 5E1 antibody 10 µg/ml or
recombinant SHHN protein 1 µg/ml in DMEM containing
0.5% (vol/vol) bovine calf serum. Luciferase activity was
measured by Fluostar Optima (BMG Labtech) using Dual
Luciferase Assay Reporter System (Promega).

Quantitative real-time PCR

Total RNA was extracted using TriZol (Invitrogen) and
purified with PureLink RNA Mini Kit (Invitrogen). cDNA
was generated using iScript cDNA synthesis kit (Bio-Rad)
or Superscript III First Strand Synthesis System (Invitro-
gen). qPCR was performed using Bio-Rad CFX real-time
cycler and SYBR Green Master Mix (Bio-Rad). Data are
presented as fold change relative to control samples using
the ΔΔCt (2−ΔΔCt) method with HPRT1 or GAPDH as an
internal control gene. Primers for qPCR are listed in Sup-
plementary Table 1.

Western blot

Cell lysates were generated and analyzed as previously
described [31]. Briefly, cells were lysed in ice-cold lysis
buffer (M-PER Mammalian Protein Extraction Reagent
(Thermo Scientific) with protease inhibitors (Roche) and
PhosSTOP phosphatase inhibitors (Roche). Cell lysates were
centrifuged at 14,000 rpm for 5 min at 4 °C and then super-
natants were collected. Protein concentration was measured
using BCA protein assay kit (Pierce) following the manu-
facturer’s instructions. The following primary antibodies
were used: SHHN (1:1000, Cell Signaling Technology,

3270 S. Kasiri et al.



C9C5), HSP90 (1:2000, Santa Cruz biotechnology, sc-
13119), and Tubulin (1:5000, abcam, ab7291).

sg-RNA design and cloning

All sg-RNA against Ihh were designed using GE Dharma-
con web tool. The sg-RNA sequences targeting GFP were
published previously [79]. sg-RNA oligo candidates (listed
on Supplementary Table 2) were inserted into pSECC
vector (a kind gift from Dr Tyler Jacks, Addgene, 60820) by
following the protocol available at this website: https://
tinyurl.com/y29utjk8.

Co-transfection of 808-T3 cells

Cells were grown to 70% confluency on six-well plates and
then co transfected with pCMV:DsRed(FRT)GFP plasmid
expressing DsRed (Addgene, 31128) and pSECC-Ihh or
pSECC-GFP using Lipofectamine 3000 (Thermo Fisher
Scientific) following manufacturer instructions. DsRed+
transfected cells were FACS sorted and plated at limiting
dilutions to isolate clonal lines.

Animals

All animal related experiments and procedures were per-
formed with prior approval of the Institutional Animal Care
and Use Committee at UTSW. FVB, KrasLox-Stop-Lox-G12D/+
[80], Trp53fl/fl [81], Shhfl/fl [52], and Rosa26Lox-mtdTomato-Stop-
Lox-mGFP/+ [48] mouse strains were purchased from Jackson
Laboratory (Bar Harbor, ME). Gli1LacZ/+ [51] mouse strain
was a kind gift from Dr Philip Beachy (Stanford Uni-
versity). Compound strains were generated through cross-
breeding. For all animal experiments, mice were randomly
selected to the experimental groups. Sample size for time
point and survival studies included at least five mice per
treatment arm except where noted in the figure legends.
Numbers of mice used in the studies are given in the cor-
responding figure legends. Investigators were not blinded to
the treatment groups.

Infection and treatment of mice

Adenovirus-expressing cre recombinase (Ad5-CMV-Cre)
was purchased from Vector Development Laboratory
(Baylor College of Medicine, Houston). Six-to-ten-week-
old mice were infected by intranasal instillation with 3 × 108

pfu per mouse as described previously [82] to initiate lung
tumorigenesis. For the in vivo CRISPR experiments,
10–14-week-old KrasLox-Stop-Lox-G12D/+; Trp53fl/fl;Rosa26LSL-
fLuc/+ (KPLuc) mice were infected with 5 × 104 ifu of len-
tivirus containing pSECC-Ihh or pSECC-GFP via

intratracheal administration as described previously [82].
KP or KP;Rosa26Lox-mtdTomato-Stop-Lox-mGFP/+ (KPmTmG)
mice were treated with 5E1 or IgG1 10 mg/kg intraper-
itoneally (i.p.) twice per week starting 2 or 6 weeks after
adeno-cre infection. For NAC study, KP mice were infected
with adeno-cre then treated with NAC 200 mg/kg i.p. on
days 12 and 13 after adeno-cre infection. Afterward, NAC
1 g/L (pH= 7.4) was provided in the drinking water. Sup-
plemented drinking water was changed every 2–3 days for
the duration of study.

Lung tissue extraction and processing

Mice were anesthetized with Avertin 25 mg/kg i.p., lungs
perfused with ice-cold PBS, inflated with ice-cold 4%
Paraformaldehyde (PFA) in PBS by intra-tracheal instil-
lation, then fixed in 4% PFA at 4 °C for 24 h. Tissue
processing and paraffin embedding were performed by
Tissue Management Core Facility or Histo-Pathology Core
Facility at UTSW. Frozen lung tissue blocks were made by
inflating lungs with 50% (v/v) OCT (Tissue-Tek) in PBS
and embedded in cryomold with 100% OCT on dry ice,
and stored in −80 °C. Five and fifteen micron thick sec-
tions were made from each PFA fixed paraffin-embedded
and frozen tissue blocks, respectively, and subjected to
hematoxylin and eosin (H&E) or IHC staining. Brightfield
images were taken using a Nikon Eclipse E800 or
Hamamatsu Nanozoomer in Whole Brain Microscopy
Facility (UTSW). Tumor area on H&E stained images
were measured using NIS Elements (Nikon) or Fiji ima-
ging software. The fraction of IHC positive nuclei in each
tumor was estimated using ImageJ or Fiji as described in
Supplemental material and methods. Images of Immuno-
fluorescence stained sections were taken by Nikon Eclipse
TE2000-U.

Immunohistochemistry (IHC)

Heat-mediated antigen retrieval (citrate buffer, pH 6) was
used for tissue sections from paraffin-embedded blocks.
Samples were blocked with goat (Sigma) or donkey serum
(Sigma) for 1 h and diluted primary antibodies were
applied overnight at 4 oC. Vectastain ABC (Vector Labs)
with DAB substrate (Vector Labs) was used for staining
according to the manufacturer’s instructions. The fol-
lowing primary antibodies were used: Ser139-p-Histone
H2A.X (1:1,000; Cell Signaling Technology, 9718),
CD31 (1:500, Cell Signaling Technology, 77,699),
β-Galactosidase (1:20,000, abcam, ab9361), PDGFRα
(Cell Signaling Technology, 3174), αSMA (1:500, Bio
Care Medical, CM001A), and E-Cadherin (1:400, Cell
Signaling Technology, 3195).
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RNA in situ hybridization method (RNAScope)

Murine samples

Five micrometer sections from paraffin embedded lungs
were deparaffinaized, fixed in 10% formalin solution at
room temperature for 24 h and then subjected to RNAscope
assay using RNAscope 2.0 HD Reagent Kit-Red (Advanced
Cell Diagnostics (ACD, 310034) and following manu-
facturer instructions. Mm-Ihh-noXHs (413091) and Mm-
Shh (314361) probes were used for murine Ihh and Shh
mRNA detection, respectively. Dapb (negative control,
310043) and PPIB (positive control, 313911) were used for
quality control (data not shown).

Human Samples

Use of human samples for research purposes was approved
by the Institutional Review Board at M.D. Anderson Cancer
Center. Consent was obtained from patients for use of their
samples for research purposes. Please see Supplementary
methods for full details of methods. Briefly, in situ hyd-
bridization was performed on an automated Leica Bond RX
autostainer (Leica Biosystems, Nussloch, GmbH). LS 2.5
Probe- Hs-IHH probe (472388, ACD) was used. RNA
expression of IHH was scored using a semi-quantitative
scoring system as follows: 0: no staining or <1 dot/10 cells;
1+: 1–3 dots/cell; 2+: 4–9 dots per cell, None or very few
dot clusters; 3+: 10–15 dots/ cell and <10% dots are in
clusters; 4+: >15 dots/cell and >10% dots are in clusters.
Positive (PPIB, Hs-PPIB, 313908) and negative (Dapb, Hs-
PPIB, 312038) control probes were also evaluated, dapB
score of <1 and PPIB score ≥2 with relatively uniform PPIB
signals throughout the sample were considered adequate for
analysis (data not shown).

Histology analysis

H&E stained lungs with tumors from KP mice were
examined. The pathologist was blinded to the conditions
of the experiment. As nearly all tumors <0.5 mm were
well-differentiated histology, only tumors ≥0.5 mm were
examined. Tumors were graded as poor, moderate or well
differentiated cancers.

Digestion of lung tissue and FACS-sort of lung
epithelial cells

Single cell suspensions of whole lungs were prepared as
described previously [83]. For FACS, single cell suspen-
sions were incubated with eBioscience Fixable Viability
Dye eFluor™ 780 (Invitrogen) and the following

antibodies (0.6 μg per 107 cells): PerCP-Cy5.5 Rat Anti-
Mouse CD45 (BD Pharmingen, 550994), PE-Cy7 Rat
Anti-Mouse CD31 (BD Pharmingen, 561410), and Bril-
liant Violet 421 anti-mouse CD326 (Ep-CAM) (BioLe-
gend, 118225) on ice for 45 min, and then subjected to
FACS-sorting using FACS Aria II (BD Biosciences) at the
Moody Foundation Flow Cytometry Core Facility at the
Children’s Research Institute at UTSW. Flow cytometry
data were analyzed with FlowJo v10.

Statistical analysis

GraphPad Prism 7 software was used to generate the graphs
and for statistical analysis. Unpaired, two-sided Student’s t-
test was used for comparison of 2 groups. Mantel-Cox log-
rank test was used for statistical significance of murine
survival curves. Univariate Cox regression analysis was
performed to calculate hazard ratio and log-rank P values
per KM-Plotter [36] (http://kmplot.com/analysis/) for the
human LAD Kaplan–Meier curves.
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