Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Postpartum breast cancer progression is driven by semaphorin 7a-mediated invasion and survival

Abstract

Young women diagnosed with breast cancer (BC) have poor prognosis due to increased rates of metastasis. In addition, women diagnosed within 10 years of most recent childbirth are approximately three times more likely to develop metastasis than age- and stage-matched nulliparous women. We define these cases as postpartum BC (PPBC) and propose that the unique biology of the postpartum mammary gland drives tumor progression. Our published results revealed roles for SEMA7A in breast tumor cell growth, motility, invasion, and tumor-associated lymphangiogenesis, all of which are also increased in preclinical models of PPBC. However, whether SEMA7A drives progression in PPBC remains largely unexplored. Our results presented herein show that silencing of SEMA7A decreases tumor growth in a model of PPBC, while overexpression is sufficient to increase growth in nulliparous hosts. Further, we show that SEMA7A promotes multiple known drivers of PPBC progression including tumor-associated COX-2 expression and fibroblast-mediated collagen deposition in the tumor microenvironment. In addition, we show for the first time that SEMA7A-expressing cells deposit fibronectin to promote tumor cell survival. Finally, we show that co-expression of SEMA7A/COX-2/FN predicts for poor prognosis in breast cancer patient cohorts. These studies suggest SEMA7A as a key mediator of BC progression, and that targeting SEMA7A may open avenues for novel therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SEMA7A promotes growth and invasion in PPBC.
Fig. 2: SEMA7A expression is increased in DCIS patient samples.
Fig. 3: SEMA7A expression is sufficient to drive tumor growth and invasion.
Fig. 4: SEMA7A promotes invasion via fibroblast-mediated collagen deposition.
Fig. 5: SEMA7A promotes mesenchymal protein expression and phenotypes.
Fig. 6: SEMA7A promotes cell survival via fibronectin.
Fig. 7: SEMA7A drives metastatic seeding and poor prognosis in patients.
Fig. 8: Model depicting SEMA7A-mediated invasion and cell survival.

Similar content being viewed by others

References

  1. Callihan EB, Gao D, Jindal S, Lyons TR, Manthey E, Edgerton S, et al. Postpartum diagnosis demonstrates a high risk for metastasis and merits an expanded definition of pregnancy-associated breast cancer. Breast Cancer Res Treat. 2013;138:549–59.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Goddard ET, Bassale S, Schedin T, Jindal S, Johnston J, Cabral E, et al. Defining the impact of a postpartum diagnosis on metastasis and the clinical features underlying risk: a young women’s breast cancer cohort study. JAMA Network. 2018 (in press).

  3. Nichols HB, Schoemaker MJ, Cai J, Xu J, Wright LB, Brook MN et al. Breast cancer risk after recent childbirth: a pooled analysis of 15 prospective studies. Ann Intern Med. 2019;170:22–30.

  4. Goddard ET, Bassale S, Schedin T, Jindal S, Johnston J, Cabral E, et al. Association between postpartum breast cancer diagnosis and metastasis and the clinical features underlying risk. JAMA Netw Open. 2019;2:e186997.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lyons TR, O’Brien J, Borges VF, Conklin MW, Keely PJ, Eliceiri KW, et al. Postpartum mammary gland involution drives progression of ductal carcinoma in situ through collagen and COX-2. Nat Med. 2011;17:1109–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Slepicka PF, Cyrill SL, Dos Santos CO. Pregnancy and breast cancer: pathways to understand risk and prevention. Trends Mol Med 2019;25:866–81.

  7. Elder AM, Tamburini BAJ, Crump LS, Black SA, Wessells VM, Schedin PJ, et al. Semaphorin 7A promotes macrophage-mediated lymphatic remodeling during postpartum mammary gland involution and in breast cancer. Cancer Res. 2018;78:6473–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lyons TR, Borges VF, Betts CB, Guo Q, Kapoor P, Martinson HA, et al. Cyclooxygenase-2-dependent lymphangiogenesis promotes nodal metastasis of postpartum breast cancer. J Clin Investig. 2014;124:3901–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guo Q, Minnier J, Burchard J, Chiotti K, Spellman P, Schedin P. Physiologically activated mammary fibroblasts promote postpartum mammary cancer. JCI Insight. 2017;2:e89206.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Asztalos S, Gann PH, Hayes MK, Nonn L, Beam CA, Dai Y, et al. Gene expression patterns in the human breast after pregnancy. Cancer Prev Res (Philos). 2010;3:301–11.

    Article  CAS  Google Scholar 

  11. Miller FR, Santner SJ, Tait L, Dawson PJ. MCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ. J Natl Cancer Inst. 2000;92:1185–6.

    Article  CAS  PubMed  Google Scholar 

  12. Gupta PB, Proia D, Cingoz O, Weremowicz J, Naber SP, Weinberg RA, et al. Systemic stromal effects of estrogen promote the growth of estrogen receptor-negative cancers. Cancer Res. 2007;67:2062–71.

    Article  CAS  PubMed  Google Scholar 

  13. Rehman M, Tamagnone L. Semaphorins in cancer: biological mechanisms and therapeutic approaches. Semin Cell Dev Biol. 2013;24:179–89.

    Article  CAS  PubMed  Google Scholar 

  14. Kinehara Y, Nagatomo I, Koyama S, Ito D, Nojima S, Kurebayashi R, et al. Semaphorin 7A promotes EGFR-TKI resistance in EGFR mutant lung adenocarcinoma cells. JCI Insight 2018;3:pii: 123093.

  15. Ma B, Herzog EL, Lee CG, Peng X, Lee CM, Chen X, et al. Role of chitinase 3-like-1 and semaphorin 7a in pulmonary melanoma metastasis. Cancer Res. 2015;75:487–96.

    Article  CAS  PubMed  Google Scholar 

  16. Saito T, Kasamatsu A, Ogawara K, Miyamoto I, Saito K, Iyoda M, et al. Semaphorin7A promotion of tumoral growth and metastasis in human oral cancer by regulation of g1 cell cycle and matrix metalloproteases: Possible contribution to tumoral angiogenesis. PLoS ONE. 2015;10:1–20.

    Google Scholar 

  17. Scott GA, McClelland LA, Fricke AF, Fender A, Plexin C. A receptor for semaphorin 7A, inactivates cofilin and is a potential tumor suppressor for melanoma progression. J Investig Dermatol. 2009;129:954–63.

    Article  CAS  PubMed  Google Scholar 

  18. Allegra M, Zaragkoulias A, Vorgia E, Ioannou M, Litos G, Beug H, et al. Semaphorin-7a reverses the ERF-induced inhibition of EMT in Ras-dependent mouse mammary epithelial cells. Mol Biol Cell. 2012;23:3873–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Black SA, Nelson AC, Gurule NJ, Futscher BW, Lyons TR. Semaphorin 7a exerts pleiotropic effects to promote breast tumor progression. Oncogene. 2016;35:5170–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Garcia-Areas R, Libreros S, Amat S, Keating P, Carrio R, Robinson P, et al. Semaphorin7A promotes tumor growth and exerts a pro-angiogenic effect in macrophages of mammary tumor-bearing mice. Front Physiol. 2014;5:17.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Garcia-Areas R, Libreros S, Simoes M, Castro-Silva C, Gazaniga N, Amat S, et al. Suppression of tumor-derived Semaphorin 7A and genetic ablation of host-derived Semaphorin 7A impairs tumor progression in a murine model of advanced breast carcinoma. Int J Oncol. 2017;51:1395–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jacob A, Jing J, Lee J, Schedin P, Gilbert SM, Peden AA, et al. Rab40b regulates trafficking of MMP2 and MMP9 during invadopodia formation and invasion of breast cancer cells. J Cell Sci. 2013;126:4647–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maller O, Hansen KC, Lyons TR, Acerbi I, Weaver VM, Prekeris R, et al. Collagen architecture in pregnancy-induced protection from breast cancer. J Cell Sci. 2013;126:4108–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Investig. 2009;119:1420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Balmanno K, Cook SJ. Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ. 2008;16:368.

    Article  CAS  PubMed  Google Scholar 

  27. Reddig PJ, Juliano RL. Clinging to life: cell to matrix adhesion and cell survival. Cancer Metastasis Rev. 2005;24:425–39.

    Article  PubMed  Google Scholar 

  28. Tiwari N, Gheldof A, Tatari M, Christofori G. EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol. 2012;22:194–207.

    Article  CAS  PubMed  Google Scholar 

  29. St-Germain ME, Gagnon V, Parent S, Asselin E. Regulation of COX-2 protein expression by Akt in endometrial cancer cells is mediated through NF-kappaB/IkappaB pathway. Mol Cancer. 2004;3:7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schedin P. Pregnancy-associated breast cancer and metastasis. Nat Rev Cancer. 2006;6:281–91.

    Article  CAS  PubMed  Google Scholar 

  31. Albrektsen G, Heuch I, Hansen S, Kvale G. Breast cancer risk by age at birth, time since birth and time intervals between births: exploring interaction effects. Br J Cancer. 2005;92:167–75.

    Article  CAS  PubMed  Google Scholar 

  32. Welch DR, Hurst DR. Defining the Hallmarks of Metastasis. Cancer Res. 2019;79:3011–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cerny J, Stockinger H, Horejsi V. Noncovalent associations of T lymphocyte surface proteins. Eur J Immunol. 1996;26:2335–43.

    Article  CAS  PubMed  Google Scholar 

  34. Zhou Y, Gunput RA, Pasterkamp RJ. Semaphorin signaling: progress made and promises ahead. Trends Biochem Sci. 2008;33:161–70.

    Article  CAS  PubMed  Google Scholar 

  35. Liu H, Juo ZS, Shim AH, Focia PJ, Chen X, Garcia KC, et al. Structural basis of semaphorin-plexin recognition and viral mimicry from Sema7A and A39R complexes with PlexinC1. Cell. 2010;142:749–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fong KP, Barry C, Tran AN, Traxler EA, Wannemacher KM, Tang HY, et al. Deciphering the human platelet sheddome. Blood. 2011;117:15–27.

    Article  CAS  Google Scholar 

  37. Jaimes Y, Gras C, Goudeva L, Buchholz S, Eiz-Vesper B, Seltsam A, et al. Semaphorin 7A inhibits platelet production from CD34+ progenitor cells. J Thrombosis Haemost. 2012;10:1100–8.

    Article  CAS  Google Scholar 

  38. Xie J, Wang H. Semaphorin 7A as a potential immune regulator and promising therapeutic target in rheumatoid arthritis. Arthritis Res Ther. 2017;19:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kopp MA, Brommer B, Gatzemeier N, Schwab JM, Pruss H. Spinal cord injury induces differential expression of the profibrotic semaphorin 7A in the developing and mature glial scar. Glia. 2010;58:1748–56.

    Article  PubMed  Google Scholar 

  40. Gan Y, Reilkoff R, Peng X, Russell T, Chen Q, Mathai SK, et al. Role of semaphorin 7a signaling in transforming growth factor beta1-induced lung fibrosis and scleroderma-related interstitial lung disease. Arthritis Rheumatism. 2011;63:2484–94.

    Article  CAS  PubMed  Google Scholar 

  41. Reilkoff RA, Peng H, Murray LA, Peng X, Russell T, Montgomery R, et al. Semaphorin 7a+ regulatory T cells are associated with progressive idiopathic pulmonary fibrosis and are implicated in transforming growth factor-beta1-induced pulmonary fibrosis. Am J Respir Crit cCare Med. 2013;187:180–8.

    Article  CAS  Google Scholar 

  42. Kang H-R, Lee CG, Homer RJ, Ja E. Semaphorin 7A plays a critical role in TGF-beta1-induced pulmonary fibrosis. J Exp Med. 2007;204:1083–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gilmore AP, Owens TW, Foster FM, Lindsay J. How adhesion signals reach a mitochondrial conclusion–ECM regulation of apoptosis. Curr Opin Cell Biol. 2009;21:654–61.

    Article  CAS  PubMed  Google Scholar 

  44. Knowles LM, Gurski LA, Engel C, Gnarra JR, Maranchie JK, Pilch J. Integrin αvβ3 and fibronectin upregulate Slug in cancer cells to promote clot invasion and metastasis. Cancer Res. 2013;73:6175–84.

    Article  CAS  PubMed  Google Scholar 

  45. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chao Y, Wu Q, Acquafondata M, Dhir R, Wells A. Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenviron. 2012;5:19–28.

    Article  CAS  PubMed  Google Scholar 

  47. Smith BN, Bhowmick NA. Role of EMT in Metastasis and Therapy Resistance. J Clin Med. 2016;5:17.

  48. Nurwidya F, Murakami A, Takahashi F, Takahashi K. Molecular mechanisms contributing to resistance to tyrosine kinase-targeted therapy for non-small cell lung cancer. Cancer Biol Med. 2012;9:18–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nurwidya F, Takahashi F, Murakami A, Takahashi K. Epithelial mesenchymal transition in drug resistance and metastasis of lung cancer. Cancer Res Treat. 2012;44:151–6.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Uchikado Y, Okumura H, Ishigami S, Setoyama T, Matsumoto M, Owaki T, et al. Increased Slug and decreased E-cadherin expression is related to poor prognosis in patients with gastric cancer. Gastric Cancer. 2011;14:41–9.

    Article  CAS  PubMed  Google Scholar 

  51. Deep G, Jain AK, Ramteke A, Ting H, Vijendra KC, Gangar SC, et al. SNAI1 is critical for the aggressiveness of prostate cancer cells with low E-cadherin. Mol Cancer. 2014;13:37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McKeithen D, Graham T, Chung LW, Odero-Marah V. Snail transcription factor regulates neuroendocrine differentiation in LNCaP prostate cancer cells. Prostate. 2010;70:982–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res. 2007;67:1979–87.

    Article  CAS  PubMed  Google Scholar 

  54. Baritaki S, Yeung K, Palladino M, Berenson J, Bonavida B. Pivotal roles of snail inhibition and RKIP induction by the proteasome inhibitor NPI-0052 in tumor cell chemoimmunosensitization. Cancer Res. 2009;69:8376–85.

    Article  CAS  PubMed  Google Scholar 

  55. Vesuna F, Lisok A, Kimble B, Domek J, Kato Y, van der Groep P, et al. Twist contributes to hormone resistance in breast cancer by downregulating estrogen receptor-alpha. Oncogene. 2012;31:3223–34.

    Article  CAS  PubMed  Google Scholar 

  56. Parkash J, Messina A, Langlet F, Cimino I, Loyens A, Mazur D, et al. Semaphorin7A regulates neuroglial plasticity in the adult hypothalamic median eminence. Nat Commun. 2015;6:6385.

    Article  CAS  PubMed  Google Scholar 

  57. Eke I, Storch K, Krause M, Cordes N. Cetuximab attenuates its cytotoxic and radiosensitizing potential by inducing fibronectin biosynthesis. Cancer Res. 2013;73:5869–79.

    Article  CAS  PubMed  Google Scholar 

  58. Pontiggia O, Sampayo R, Raffo D, Motter A, Xu R, Bissell MJ, et al. The tumor microenvironment modulates tamoxifen resistance in breast cancer: a role for soluble stromal factors and fibronectin through beta1 integrin. Breast Cancer Res Treat. 2012;133:459–71.

    Article  CAS  PubMed  Google Scholar 

  59. Han SW, Roman J. Fibronectin induces cell proliferation and inhibits apoptosis in human bronchial epithelial cells: pro-oncogenic effects mediated by PI3-kinase and NF-kappa B. Oncogene. 2006;25:4341–9.

    Article  CAS  PubMed  Google Scholar 

  60. Hattar R, Maller O, McDaniel S, Hansen KC, Hedman KJ, Lyons TR et al. Tamoxifen induces pleiotrophic changes in mammary stroma resulting in extracellular matrix that suppresses transformed phenotypes. Breast Cancer Res. 2009;11:R5.

  61. Cheng JQ, Jiang X, Fraser M, Li M, Dan HC, Sun M, et al. Role of X-linked inhibitor of apoptosis protein in chemoresistance in ovarian cancer: possible involvement of the phosphoinositide-3 kinase/Akt pathway. Drug Resist Updat. 2002;5:131–46.

    Article  CAS  PubMed  Google Scholar 

  62. Fraser M, Leung BM, Yan X, Dan HC, Cheng JQ, Tsang BK. p53 is a determinant of X-linked inhibitor of apoptosis protein/Akt-mediated chemoresistance in human ovarian cancer cells. Cancer Res. 2003;63:7081–8.

    CAS  PubMed  Google Scholar 

  63. Knuefermann C, Lu Y, Liu B, Jin W, Liang K, Wu L, et al. HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene. 2003;22:3205–12.

    Article  CAS  PubMed  Google Scholar 

  64. Li J, Feng Q, Kim JM, Schneiderman D, Liston P, Li M, et al. Human ovarian cancer and cisplatin resistance: possible role of inhibitor of apoptosis proteins. Endocrinology. 2001;142:370–80.

    Article  CAS  PubMed  Google Scholar 

  65. Gurrapu S, Pupo E, Franzolin G, Lanzetti L, Tamagnone L. Sema4C/PlexinB2 signaling controls breast cancer cell growth, hormonal dependence and tumorigenic potential. Cell Death Differ. 2018;25:1259–75.

  66. Crump LS, Wyatt G, Porter WW, Richer J, Lyons TR. Hormonal regulation of Semaphorin 7a in ER+ breast cancer drives therapeutic resistance. bioRxiv 2019: 650135.

  67. Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 2006;4:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 2008;6:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Slocum E, Craig A, Villanueva A, Germain D. Parity predisposes breasts to the oncogenic action of PAPP-A and activation of the collagen receptor DDR2. Breast Cancer Res. 2019;21:56.

  70. Ristimäki A, Sivula A, Lundin J, Ristima A, Lundin M, Salminen T et al. Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res. 2002;62:632–5.

  71. Denkert C, Winzer K-J, Müller B-M, Weichert W, Pest S, Köbel M, et al. Elevated expression of cyclooxygenase-2 is a negative prognostic factor for disease free survival and overall survival in patients with breast carcinoma. Cancer. 2003;97:2978–87.

    Article  CAS  PubMed  Google Scholar 

  72. Pasterkamp RJ, Peschon JJ, Spriggs MK, Kolodkin AL. Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature. 2003;424:398–405.

    Article  CAS  PubMed  Google Scholar 

  73. Hu M, Peluffo G, Chen H, Gelman R, Schnitt S, Polyak K. Role of COX-2 in epithelial-stromal cell interactions and progression of ductal carcinoma in situ of the breast. Proc Natl Acad Sci USA. 2009;106:3372–7.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Valdez KE, Fan F, Smith W, Allred DC, Medina D, Behbod F. Human primary ductal carcinoma in situ (DCIS) subtype-specific pathology is preserved in a mouse intraductal (MIND) xenograft model. J Pathol. 2011;225:565–73.

  75. Nagy A, Lanczky A, Menyhart O, Gyorffy B. Author correction: Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep. 2018;8:11515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dean JL, McClendon AK, Hickey TE, Butler LM, Tilley WD, Witkiewicz AK, et al. Therapeutic response to CDK4/6 inhibition in breast cancer defined by ex vivo analyses of human tumors. Cell Cycle. 2012;11:2756–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Barrett AS, Wither MJ, Hill RC, Dzieciatkowska M, D’Alessandro A, Reisz JA, et al. Hydroxylamine chemical digestion for insoluble extracellular matrix characterization. J Proteome Res. 2017;16:4177–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Reisz JA, Nemkov T, Dzieciatkowska M, Culp-Hill R, Stefanoni D, Hill RC, et al. Methylation of protein aspartates and deamidated asparagines as a function of blood bank storage and oxidative stress in human red blood cells. Transfusion. 2018;58:2978–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chong J, Xia J. MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics. 2018;34:4313–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019;47:D419–26.

Download references

Acknowledgements

MCF10DCIS cells were obtained from K. Polyak and A. Marusyk (Harvard University, Cambridge, MA). MDA-MB-231 cells were obtained from P. Schedin (Oregon Heath and Sciences University, Portland OR). HLF-1 cells were gifted from M. Fini (CU Anschutz Medical Campus, Denver, CO). We thank H. Ford for the pcDNA3.1 vector (CU Anschutz Medical Campus, Denver, CO) and R. Medzhitov (Yale University, New Haven, CT) for the SEMA7A-Fc overexpression vector. We also acknowledge V. Wessells, A. Elder, L. Crump, T. Wallace, C. Young, A. Stoller, M. Kobritz, and C. Hoang for technical support and advice. This work was supported by the American Cancer Society (RSG 16-171-01-CSM) and NIH/NCI (R01CA211696-01A1) to TRL and NIH/CCTSI/CTSA (TL1 TR001081) to SET.

Author information

Authors and Affiliations

Authors

Contributions

SET and TRL conceived and designed the study. SET performed all in vitro and in vivo studies. VFB and FB were responsible for regulatory oversight of human tissue acquisition and providing cases for IHC analysis. RCH and KH were responsible for all mass spectrometry experiments and associated data analysis. ACN was responsible for analyzing and scoring all tumor for invasion. SET and TRL were responsible for hypothesis development, conceptual design, data analysis, and data interpretation. SET and TRL wrote the manuscript with all authors providing critical evaluation.

Corresponding author

Correspondence to Traci R. Lyons.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarullo, S.E., Hill, R.C., Hansen, K.C. et al. Postpartum breast cancer progression is driven by semaphorin 7a-mediated invasion and survival. Oncogene 39, 2772–2785 (2020). https://doi.org/10.1038/s41388-020-1192-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1192-9

This article is cited by

Search

Quick links